A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut...A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.展开更多
Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal ox...Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.展开更多
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SS...Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.展开更多
Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagati...Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.展开更多
We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identify...We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.展开更多
This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly prem...This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrat...To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrated with the kinetic theory of granular flow.The solid circulation mechanism and gas leakage performance were studied in detail.The simulation results showed that in the start-up process,the solid circulation rate first increased to approximately 5 kg/s and then dropped to approximately 1.2 kg/s;this observation was related to the dynamic control of the pressure distribution.In this system,the gas leakage between the inertial separator,upper air reactor,and lower air reactor was restrained by adjusting the pressure difference,thus obtaining optimal gas flow paths.When the pressures at the outlets of the inertial separator,upper air reactor,and lower air were 7.4,11.0,and 14.6 kPa,respectively,the gas leakage ratio was less than 1%in the system.展开更多
Combustion is a chemical phenomenon in which a multitude of elementary chemical reactions take place, resulting in the overall process of fuel oxidation. Natural gas fuel has been explored for a few decades and extrac...Combustion is a chemical phenomenon in which a multitude of elementary chemical reactions take place, resulting in the overall process of fuel oxidation. Natural gas fuel has been explored for a few decades and extracted for a few years in the region of Paraguayan Chaco, near Bolivia border. Currently, natural gas is not very important in Paraguay's energy matrix, however it could be in the near future if higher volumes are extracted and transported to the most populated cities, specially to the capital. In order to improve Paraguayan natural gas combustion performance, an understanding of its fundamental properties and the combustion pathways is required. This study presents new data for Paraguayan Chaco natural gas combustion in a laminar counterflow diffusion flame configuration at atmospheric pressure. Visible chemiluminescence of excited radicals CH* and C2^* is employed experimentally. 1D numerical simulation was carried out using Paraguayan Chaco natural gas chemical composition and a standard kinetic mechanism, to which we added CH* and C] reactions. Typical flame structures resulting from simulation are presented and a validation of the model is realized comparing experimental and numerical CH* and C~ radicals profiles.展开更多
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal...A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.展开更多
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence model...Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.展开更多
Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube...Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related ther- modynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and vali- dated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with ana- lytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are invcstigatcd. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.展开更多
This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dyna...This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics(CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.展开更多
文摘A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.
基金Supported by the National~ Natural Science Foundation of China (20876079), the Natural Science Funds for Distinguished Young Scholar in Shandong Province (JQ200904), and Shandong Province Key Technologies Research and Development Program of China (2008GG 10006010, 2009GG 10007001).
文摘Chemical-looping gasification (CLG) is a novel process for syngas generation from solid fuels, sharing the same basic principles as chemical-looping combustion (CLC). It also uses oxygen carriers (mainly metal oxide and calcium sulfate) to transfer heat and oxygen to the fuel. In this paper, the primary investigation into the CLG process with CaSO4 as oxygen carrier was carried out by thermodynamic analysis and experiments in the tube reactor. Sulfur-contained gas emission was mainly H2S rather than SO2 in the CLG process, showing some different features from the CLC. The mass and heat balance of CLG processes were calculated thermodynamically to determinate the auto-thermal operating conditions with different CaSO4/C and steam/C molar ratios. It was found that the CaSO4/C molar ratio should be higher than 0.2 to reach auto-thermal balance. The effect of temperature on the reactions between oxygen carrier and coal was investigated based on Gibbs free energy minimum method and ex- perimental results. It indicated that high temperature favored the CLG process in the fuel reactor and part of syngas was consumed to compensate for auto-thermal system.
文摘Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.
文摘Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.
基金supported by the National Natural Science Foundation of China(No.91641205,No.51622605,No.91541201)the Shanghai Science and Technology Committee(No.17XD1402000)
文摘We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.
文摘This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金The National Natural Science Foundation of China(No.51976034)China Postdoctoral Science Foundation(No.2020M681455)+2 种基金the National Key R&D Program of China(No.2018YFC1901200)Jiangsu Planned Projects for Postdoctoral Research Fundsthe Fundamental Research Funds for the Central Universities.
文摘To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrated with the kinetic theory of granular flow.The solid circulation mechanism and gas leakage performance were studied in detail.The simulation results showed that in the start-up process,the solid circulation rate first increased to approximately 5 kg/s and then dropped to approximately 1.2 kg/s;this observation was related to the dynamic control of the pressure distribution.In this system,the gas leakage between the inertial separator,upper air reactor,and lower air reactor was restrained by adjusting the pressure difference,thus obtaining optimal gas flow paths.When the pressures at the outlets of the inertial separator,upper air reactor,and lower air were 7.4,11.0,and 14.6 kPa,respectively,the gas leakage ratio was less than 1%in the system.
文摘Combustion is a chemical phenomenon in which a multitude of elementary chemical reactions take place, resulting in the overall process of fuel oxidation. Natural gas fuel has been explored for a few decades and extracted for a few years in the region of Paraguayan Chaco, near Bolivia border. Currently, natural gas is not very important in Paraguay's energy matrix, however it could be in the near future if higher volumes are extracted and transported to the most populated cities, specially to the capital. In order to improve Paraguayan natural gas combustion performance, an understanding of its fundamental properties and the combustion pathways is required. This study presents new data for Paraguayan Chaco natural gas combustion in a laminar counterflow diffusion flame configuration at atmospheric pressure. Visible chemiluminescence of excited radicals CH* and C2^* is employed experimentally. 1D numerical simulation was carried out using Paraguayan Chaco natural gas chemical composition and a standard kinetic mechanism, to which we added CH* and C] reactions. Typical flame structures resulting from simulation are presented and a validation of the model is realized comparing experimental and numerical CH* and C~ radicals profiles.
文摘A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.
基金supported by the 111 Project(Grant No.B13001)by the Young Thousand Talents Program from the Organization Department of the Communist Party of China Central Committee
文摘Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
基金supported by the DFG(Deutsche Forschungsgemeinschaft)[SFB-TRR 150“Turbulent,Chemically Reactive Multi-Phase Flows near Walls”,sub-projects B02 and B04]
文摘Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related ther- modynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and vali- dated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with ana- lytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are invcstigatcd. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.
基金supported by Research Program supported by Konkuk University, Korea, 2010
文摘This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics(CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.