Catalytic combustion of CH4/air in monolith reactor is simulated using a commercial computational fluid dy-namic code. The user subroutines to describe the heterogeneous reaction at the channel wall in a single channe...Catalytic combustion of CH4/air in monolith reactor is simulated using a commercial computational fluid dy-namic code. The user subroutines to describe the heterogeneous reaction at the channel wall in a single channel and at the channel walls in the whole reactor are incorporated into the program. The correctness of the method is verified by com-paring the simulation results with the experimental data for the whole reactor. Furthermore, it is observed that the model based on the whole reactor is more reasonable than that based on a single channel. Therefore, using the former, the effects of operating conditions such as inlet gas velocity, temperature, concentration and catalyst loading on methane conversion are investigated.展开更多
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SS...Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.展开更多
A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted re...A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted results with the measured data. The methane conversion increases with decreasing the inlet methane concentration and gas space velocity and increasing the inlet ozone concentration and temperature. As the reactor length reduces, the methane conversion varies little if the reactor is too long but decreases when the reactor is too short. Therefore, the reactor should he properly designed to balance costs and the methane-conversion efficiency.展开更多
基金Supported by the National Natural Science Foundation of China (No.20136010 and No.20376005).
文摘Catalytic combustion of CH4/air in monolith reactor is simulated using a commercial computational fluid dy-namic code. The user subroutines to describe the heterogeneous reaction at the channel wall in a single channel and at the channel walls in the whole reactor are incorporated into the program. The correctness of the method is verified by com-paring the simulation results with the experimental data for the whole reactor. Furthermore, it is observed that the model based on the whole reactor is more reasonable than that based on a single channel. Therefore, using the former, the effects of operating conditions such as inlet gas velocity, temperature, concentration and catalyst loading on methane conversion are investigated.
文摘Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Chongqing(CSTC2012JJJQ90003)the National Natural Science Foundation of China(51222603,51325602,51276208)+2 种基金the Fundamental Research Funds for the Central Universities(CDJZR12148801)the Program for New Century Excellent Talents in University(NCET120591)the RGC General Research Fund of HKSAR(City U114310)
文摘A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted results with the measured data. The methane conversion increases with decreasing the inlet methane concentration and gas space velocity and increasing the inlet ozone concentration and temperature. As the reactor length reduces, the methane conversion varies little if the reactor is too long but decreases when the reactor is too short. Therefore, the reactor should he properly designed to balance costs and the methane-conversion efficiency.