The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reacto...The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reactor system was conducted,which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor.For the ambient temperature variation,three off-design control strategies have been assumed and compared:1) without any Inlet Guide Vane(IGV) control,2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature,aside from fuel flow rate adjusting.Results indicate that,compared with the conventional combined cycle,due to the requirement of pressure balance at outlet of the two CLC reactors,CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted.For the first control strategy,temperatures of the two CLC reactors both rise obviously as ambient temperature increases.IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point.Compare with the second strategy,the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.展开更多
基金supported by the National High Technology R&D Project of China (No 2006AA05A109)the National Key Fundamental Research Program of China (No2007CB210102)
文摘The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reactor system was conducted,which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor.For the ambient temperature variation,three off-design control strategies have been assumed and compared:1) without any Inlet Guide Vane(IGV) control,2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature,aside from fuel flow rate adjusting.Results indicate that,compared with the conventional combined cycle,due to the requirement of pressure balance at outlet of the two CLC reactors,CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted.For the first control strategy,temperatures of the two CLC reactors both rise obviously as ambient temperature increases.IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point.Compare with the second strategy,the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.