The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equ...The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.展开更多
The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power densi...The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy.展开更多
A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti-...A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti- cles and the breaking force induced by bubbles in the fiuidized bed, the model considers modified Urbain model and chemical equilibrium calculations using FactSage modeling. This model prediction accounts for the evolve- ment of the adhesive and breaking forces, and clearly demonstrates that the different composition of ash, the in- creasing liquid phase matter and the fiuidization velocity cause defluidization in fluidized bed. In this model, it is the first time to hypothesize that the bonding stress between two particles is proportional to mass fraction of liq- uid phase and inversely proportional to the diameter of particles and viscosity of liquid phase. The defluidization time calculated by this model shows good agreement with that from the experimental data.展开更多
The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chem...The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chemical processes occuring at burning pulverized coal in the furnace model. Three-dimensional flows, heat and mass transfer, chemical kinetics of the processes, effects of thermal radiation are considered. Obtained results give quantitative information on velocity distributions, temperature and concentration profiles of the components, the amount of combustion products including harmful substances. The numerical model becomes a tool for investigation and design of combustion chambers with high-efficiency and reliable operation of boiler at thermal power plants.展开更多
文摘The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.
基金Project(51175500)supported by the National Natural Science Foundation of China
文摘The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy.
基金the support of National Natural Science Foundation of China (Project Code:50706055)
文摘A mathematical model has been developed to describe the agglomeration process in bio-fuel fired fluidized bed combustor. Based on the balance mechanism of the adhesive force caused by liquid bonding between two parti- cles and the breaking force induced by bubbles in the fiuidized bed, the model considers modified Urbain model and chemical equilibrium calculations using FactSage modeling. This model prediction accounts for the evolve- ment of the adhesive and breaking forces, and clearly demonstrates that the different composition of ash, the in- creasing liquid phase matter and the fiuidization velocity cause defluidization in fluidized bed. In this model, it is the first time to hypothesize that the bonding stress between two particles is proportional to mass fraction of liq- uid phase and inversely proportional to the diameter of particles and viscosity of liquid phase. The defluidization time calculated by this model shows good agreement with that from the experimental data.
基金funded by the Ministry of Education and Science of Kazakhstan Republic,№0112РК01095support from the Technology Agency of the Czech Republic in the frame of the Competence Centre Advanced Technology of Heat and Electricity Output,No.TE01020036
文摘The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chemical processes occuring at burning pulverized coal in the furnace model. Three-dimensional flows, heat and mass transfer, chemical kinetics of the processes, effects of thermal radiation are considered. Obtained results give quantitative information on velocity distributions, temperature and concentration profiles of the components, the amount of combustion products including harmful substances. The numerical model becomes a tool for investigation and design of combustion chambers with high-efficiency and reliable operation of boiler at thermal power plants.