Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transf...Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transformations and concentration of 18 traceelements during different coal combustion were discussed.The results show that there aresome content distribution of 18 hazardous trace elements in every burnt product, but thelaw of concentration and dispersion of every trace element during different coal combustionis very different.Experiment results indicate that the transformation and concentrationof trace elements during coal combustion are related to the element contents and occur-rencesof trace elements in raw coal, but are also affected by some man-made factorssuch as the combustion method of boiler, combustion temperature and atmosphere, thetype of precipitators and so on.展开更多
A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted re...A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted results with the measured data. The methane conversion increases with decreasing the inlet methane concentration and gas space velocity and increasing the inlet ozone concentration and temperature. As the reactor length reduces, the methane conversion varies little if the reactor is too long but decreases when the reactor is too short. Therefore, the reactor should he properly designed to balance costs and the methane-conversion efficiency.展开更多
基金Supported by the National Natural Science Key Foundation of China(40133010)Natural Science Foundation of China of Anhui University of Science and Technology for ph.D to Research(DG414)
文摘Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transformations and concentration of 18 traceelements during different coal combustion were discussed.The results show that there aresome content distribution of 18 hazardous trace elements in every burnt product, but thelaw of concentration and dispersion of every trace element during different coal combustionis very different.Experiment results indicate that the transformation and concentrationof trace elements during coal combustion are related to the element contents and occur-rencesof trace elements in raw coal, but are also affected by some man-made factorssuch as the combustion method of boiler, combustion temperature and atmosphere, thetype of precipitators and so on.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Chongqing(CSTC2012JJJQ90003)the National Natural Science Foundation of China(51222603,51325602,51276208)+2 种基金the Fundamental Research Funds for the Central Universities(CDJZR12148801)the Program for New Century Excellent Talents in University(NCET120591)the RGC General Research Fund of HKSAR(City U114310)
文摘A steady-state ID macro-homogeneous model is developed to illustrate the combustion process of methane with ozone in the reactor composed of Pd-exchanged zeolite X. The model is validated by comparing the predicted results with the measured data. The methane conversion increases with decreasing the inlet methane concentration and gas space velocity and increasing the inlet ozone concentration and temperature. As the reactor length reduces, the methane conversion varies little if the reactor is too long but decreases when the reactor is too short. Therefore, the reactor should he properly designed to balance costs and the methane-conversion efficiency.