Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market p...Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.展开更多
Multiple sulfur isotopes (32S, 335, 345, 365) and oxygen isotopes (160, 180) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ345 values of Beijing aerosol samples range from 1.68%o ...Multiple sulfur isotopes (32S, 335, 345, 365) and oxygen isotopes (160, 180) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ345 values of Beijing aerosol samples range from 1.68%o to 12.57%o with an average value of 5.86%0, indicating that the major sulfur source is from direct emission during coal combustion. The c5180 values vary from -5.29%0 to 9.02%0 with an average value of 5.17%o, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H202 in July and August, whereas H202 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur iso- tope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between A335 and CAPE.展开更多
文摘Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.
基金supported by National Natural Science Foundation of China(Grant Nos.41240025 and 41373023)Start-up Foundation of the Ministry of Education for Overseas Returnees(Grant No.2012s001)Prospective Researching Project of Industry-University-Research of Jiangsu Province(Grant No.BY2013007-03)
文摘Multiple sulfur isotopes (32S, 335, 345, 365) and oxygen isotopes (160, 180) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ345 values of Beijing aerosol samples range from 1.68%o to 12.57%o with an average value of 5.86%0, indicating that the major sulfur source is from direct emission during coal combustion. The c5180 values vary from -5.29%0 to 9.02%0 with an average value of 5.17%o, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H202 in July and August, whereas H202 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur iso- tope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between A335 and CAPE.