A work on soot emission control simulation in stoker-fired boiler by secondary air has been done. Some models such as k-e, combustion, radiation, and soot Khan-Greeves have been adopted. Soot production and emission h...A work on soot emission control simulation in stoker-fired boiler by secondary air has been done. Some models such as k-e, combustion, radiation, and soot Khan-Greeves have been adopted. Soot production and emission has been reduced by secondary air; the highest mass concentration is reduced from 7.46 × 10^-14 to 6.94 × 10^15; mass concentration of soot is decreased from 1.12 ×10^-15 to 9.25 ×10^-32 in the upper areas.展开更多
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain ...In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.展开更多
During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expoun...During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expounded the combustion fluorine retention agent developing principle,and probed into the high-temperature fluorine retention agent technical approach.The results show that the calcium-based sorbent particle grain size and pore structure also have the bigger influence on the combustion fluorine retention ef- fect,and reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development.展开更多
CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electr...CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electricity style; more than 2,000 millions tons coal has been consumed in coal-fired power plants in China. In order to control CO2 emission, three technologies has been introduced, CCS (carbon capture and storage), oxy-combusion, and IGCC (integrated gasification combined cycle). CCS and IGCC technologies are expensive and need too many facilities; besides, there are some concrete problems need to resolve on the oxy-combustion technology. The energy saving work is the other pattern of CO2 emission control.展开更多
文摘A work on soot emission control simulation in stoker-fired boiler by secondary air has been done. Some models such as k-e, combustion, radiation, and soot Khan-Greeves have been adopted. Soot production and emission has been reduced by secondary air; the highest mass concentration is reduced from 7.46 × 10^-14 to 6.94 × 10^15; mass concentration of soot is decreased from 1.12 ×10^-15 to 9.25 ×10^-32 in the upper areas.
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
基金Projects 2007B53 supported by the Foundation for National Excellent Doctoral Dissertation of ChinaBK2008123 by the Natural Science Foundation of Jiangsu Province
文摘In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.
基金the National Natural Science Foundation of China(50476032)China Postdoctoral Science Foundation(2004035555)New Century of Talents Scheme Projects of Universities in Liaoning Province(RC-04-04)
文摘During the fixed bed tube furnace combustion experimental study,stimulated the calcium-based sorbent grain size and microstructured influencing factors to explain the fluorine retention effect influence law,and expounded the combustion fluorine retention agent developing principle,and probed into the high-temperature fluorine retention agent technical approach.The results show that the calcium-based sorbent particle grain size and pore structure also have the bigger influence on the combustion fluorine retention ef- fect,and reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development.
文摘CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electricity style; more than 2,000 millions tons coal has been consumed in coal-fired power plants in China. In order to control CO2 emission, three technologies has been introduced, CCS (carbon capture and storage), oxy-combusion, and IGCC (integrated gasification combined cycle). CCS and IGCC technologies are expensive and need too many facilities; besides, there are some concrete problems need to resolve on the oxy-combustion technology. The energy saving work is the other pattern of CO2 emission control.