An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances wil...An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances will dramatically undermine the stability of autopilot system.The fuel sloshing dynamics and uncertainties due to the time-varying parameters are considered as a generalized disturbance which is estimated by an ESO from the measured attitude signals and the control input signals.Then a continuous-time predictive controller driven by the estimated states and disturbances is designed to obtain the virtual control input,which is allocated to the real control actuators according to a deadband logic.The 6-DOF simulation results reveal the effectiveness of the proposed method when dealing with the fuel sloshing dynamics and parameter perturbations.展开更多
The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic...The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.展开更多
基金Project(020301)supported by the Manned Spaceflight Advanced Research,ChinaProject(14JJ3024)supported by Hunan Natural Science Foundation,China
文摘An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances will dramatically undermine the stability of autopilot system.The fuel sloshing dynamics and uncertainties due to the time-varying parameters are considered as a generalized disturbance which is estimated by an ESO from the measured attitude signals and the control input signals.Then a continuous-time predictive controller driven by the estimated states and disturbances is designed to obtain the virtual control input,which is allocated to the real control actuators according to a deadband logic.The 6-DOF simulation results reveal the effectiveness of the proposed method when dealing with the fuel sloshing dynamics and parameter perturbations.
文摘The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.