The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multi- ple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among ...The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multi- ple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among the 19 important metallogenic tar- gets in China. Important progress has been made in recent years in understanding the Nanling granitoids and associated miner- alization, and this paper introduces the latest major findings as follows: (1) there exists a series of Caledonian, Indosinian, and Yanshanian W-Sn-bearing granites; (2) the Sn-bearing Yanshanian granites in the Nanling Range form an NE-SW trending aluminous A-type granite belt that stretches over 350 km. The granites typically belong to the magnetite series, and dioritic micro-granular enclaves with mingling features are very common; (3) the Early Yanshanian Sn- and W-bearing granites pos- sess different petrological and geochemical features to each other: most Sn-bearing granites are metaluminous to weakly per- aluminous biotite (hornblende) granites, with zircon tHe(t) values of ca. -2 to -8, whereas most W-bearing granites are peralu- minous two-mica granites or muscovite granites with CHf(t) values of ca. -8 to -12; (4) based on the petrology and geochemis- try of the W-Sn-bearing granites, mineralogical studies have shown that common minerals such as titanite, magnetite, and bio- tite may be used as indicators for discriminating the mineralizing potential of the Sn-bearing granites. Similarly, W-bearing minerals such as wolframite may indicate the mineralizing potential of the W-bearing granites. Future studies should be fo- cused on examining the internal relationships between the multiple-aged granites in composite bodies, the metallogenic pecu- liarities of multiple-aged W-Sn-bearing granites, the links between melt evolution and highly evolved ore-bearing felsic dykes, and the connections between granite domes and mineralization.展开更多
Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central ...Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central and northern parts of Guangdong Province),many small stocks occur in the southern part of Jiangxi Province.Most of the small stocks are associated closely with economically significant rare-metal deposits(W,Sn,Nb,Ta).Here we report the results for biotite granites and two-mica granites from three Yanshanian stocks of the Longyuanba complex.LA-ICPMS U-Pb dating of zircon yields an age of 156.1±2.1 Ma for Xiaomubei biotite granite,and U-Pb zircon dating using SIMS yields an age of 156.7±1.2 Ma for Longyuanba-Chengjiang biotite granite and 156.4±1.3 Ma for Jiangtoudong two-mica granite.Biotite granites are silica-rich(SiO 2 =70%-79%),potassic(K 2 O/Na 2 O>1.9),and peraluminous(ASI=1.05-1.33).Associated samples are invariably enriched in Rb,Th,Pb and LREE,yet depleted in Ba,Nb,Sr,P and Ti,and their REE pattern shows a large fractionation between LREE and HREE((La/Yb) N =10.7-13.5) and a pronounced Eu negative anomaly(δEu=0.28-0.41).Two-mica granite samples are also silica-rich(SiO 2 =75%-79%),potassic(K 2 O/Na 2 O>1.2),and peraluminous(ASI=1.09-1.17).However,in contrast to the biotite granites,they are more enriched in Rb,Th,Pb and extremely depleted in Ba,Nb,Sr,P and Ti,and exhibit nearly flat((La/Yb) N =0.75-1.08) chondrite-normalized REE patterns characterized by strong Eu depletion(δEu=0.02-0.04) and clear tetrad effect(TE 1.3 =1.10-1.14).Biotite granites and two-mica granties have comparable Nd isotopic signatures,and their εNd(t) are concentrated in the 13.0 to 9.6 and 11.5 to 7.7 respectively.Their zircon Hf-O isotopes of both also show similarity(biotite granites:εHf(t)= 10.8-7.9,δ 18 O=7.98‰-8.89‰ and εHf(t)= 13.8 to 9.1,δ 18 O=8.31‰-10.08‰;two-mica granites:εHf(t)= 11.3 to 8.0,δ 18 O=7.91‰-9.77‰).The results show that both biotite and two-mica granites were derived mainly from sedimentary source rocks with a minor contribution from mantle-derived materials.In spite of some S-type characteristics,the biotite granites were formed by fractional crystallization of I-type magma and assimilation of peraluminous sedimentary rocks during their ascent to the surface.Therefore,they belong to highly fractionated I-type granites.Two-mica granites exhibit a tetrad effect in their REE patterns,but share the same isotopic features with the biotite granites,suggesting that they are highly fractionated I-type granites as well.Their Lanthanide tetrad effects may be attributed to the hydrothermal alteration by magmatic fluids that have suffered degassing at late stages.Granitic magmas undergoing fractional crystallization and wall-rock assilimation can generate highly evolved granites with no REE tetrad effect in the uni-phase system.However,in the late-stage of magmatic evolution in the multi-phase system(i.e.,magmatic-hydrothermal system),these magmas also can lead to the highly evolved granites exhibiting mew-shaped REE pattern characterized by tetrad effect as the consequence of melt-fluid and fluid-vapor fractionation,and the resultant autometasomatism.We thus suggest that the REE pattern exhibiting tetrad effect feature is an important indicator of rare metal mineralization in the early Yanshanian time in southern China,implying the metamorphism of the ore fluid.展开更多
Yanshanian magmatisms are intensive in the southern Anhui Province and can be divided into early (152-137 Ma) and late (136-122 Ma) stages. A Yanshanian granitic zone was found to crop out along Qingshan to Changg...Yanshanian magmatisms are intensive in the southern Anhui Province and can be divided into early (152-137 Ma) and late (136-122 Ma) stages. A Yanshanian granitic zone was found to crop out along Qingshan to Changgai areas in the Ttmxi district in Field investigation which has a genetic link with molybdenum multiple metal mineralization. To be a representative syenitic granite in the southern Anhui Province, the Huangshan pluton has not been found so far to have any genetic link with mineralization. Zircon LA-ICP-MS dating indicate that the four granitic bodies from the Qingshan-Changgai zone have concurrent formed ages from 140~:4 to 141~2 Ma, belonging to the Yanshanian early stage magmatism. However, the Huangshan granite is dated to be 12912 Ma, belonging to the Yanshanian late stage magmatism. The Qingshan-Changgai granites show high SiO2 and K20 contents, low P205 contents and middle A12O3 contents and are high-K calc-alkaline series metaluminum I-type granite. These rocks are characterized by enrichments in the large ion lithophile elements and light rare earth elements (REE), depletions in the high field-strength elements, and middle degree negative anomalies of Eu, geochemical features of arc or continent crustal derived magma affinities. These rocks have 87Sr/StSr(t) ratios from 0.7120 to 0.7125,εNd(t) values from -7.24 to -4.38 and zircon εHf(t) values of -4.4 to 6.7, similar to that of the coeval ore-bearing granodiorites in the southern Anhui Province. Integrated geochemical studies indicate that the Yanshanian ore-bearing granodiorites were formed by partial melting of the Meso-Neoproterozoic accreted thickened low crust. Meanwhile, the Qingshan-Changgai granites were formed through a AFC process of plagioclase+amphibole+Shangxi Group of magmas that formed the ore-bearing granodiorites. The Huangshan granites are characterized by high SiOz and K2O contents, moderate Al2O3 contents, seagull shape REE distributed pattern and distinct Eu negative abnormities. Comparing with the Qingshan-Changgai granites, the Huangshan granites show more Ba, Sr, P, and Ti negative abnormities with no Nb and Ta depletions and are high-K calc-alkaline series metaluminum A-type granite, εHr(t) values of the Huangshan granites are from -6.6 to -1.2, similar to that of the early stage ore-bearing granodiorites, indicating that they were also formed by anatexis of the Meso-Neoproterozoic accreted crust, but their magma sources might be residual granulitic crust which ever underwent Yanshanian early stage I-type intermediate-acid magma extraction. Comparing studies on the two stages granites indicate that the early stage granites derived from a relative thickened low crust under a lower temperature condition. Their magma sources were Meso-Neoproterozoic accreted crust which enriched in ore-forming materials and further became more enriched through processes of magma AFC evolution. However, the late stage A-type granites originated from relative shallow crust under a higher temperature condition. Their magma source was depleted in ore-forming materials due to the early stage magma extraction and thus had weak ore-forming capacity. From early to late stage, the magmatisms tectonic setting translated from post-orogenic to anorogenic and the later corresponded to a back-arc extensional setting as increase of the slab subducted angle of the Paleo-Pacific plate.展开更多
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac...The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.41230315,40730423)Ministry of Science and Technology(Grant No.2012CB416704)China National Geological Survey Bureau(Grant No.12120113067300)
文摘The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multi- ple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among the 19 important metallogenic tar- gets in China. Important progress has been made in recent years in understanding the Nanling granitoids and associated miner- alization, and this paper introduces the latest major findings as follows: (1) there exists a series of Caledonian, Indosinian, and Yanshanian W-Sn-bearing granites; (2) the Sn-bearing Yanshanian granites in the Nanling Range form an NE-SW trending aluminous A-type granite belt that stretches over 350 km. The granites typically belong to the magnetite series, and dioritic micro-granular enclaves with mingling features are very common; (3) the Early Yanshanian Sn- and W-bearing granites pos- sess different petrological and geochemical features to each other: most Sn-bearing granites are metaluminous to weakly per- aluminous biotite (hornblende) granites, with zircon tHe(t) values of ca. -2 to -8, whereas most W-bearing granites are peralu- minous two-mica granites or muscovite granites with CHf(t) values of ca. -8 to -12; (4) based on the petrology and geochemis- try of the W-Sn-bearing granites, mineralogical studies have shown that common minerals such as titanite, magnetite, and bio- tite may be used as indicators for discriminating the mineralizing potential of the Sn-bearing granites. Similarly, W-bearing minerals such as wolframite may indicate the mineralizing potential of the W-bearing granites. Future studies should be fo- cused on examining the internal relationships between the multiple-aged granites in composite bodies, the metallogenic pecu- liarities of multiple-aged W-Sn-bearing granites, the links between melt evolution and highly evolved ore-bearing felsic dykes, and the connections between granite domes and mineralization.
基金supported by the Chinese Academy of Sciences(Grant Nos.KZCX1-YW-15-2 and GIGCAS-135Y234151001)the Ministry of Science and Technology(Grant No. 2007CB411403)+1 种基金National Natural Science Foundation of China (Grant Nos.40973025 and 41173039)contribution No.1655 from GIGCAS
文摘Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central and northern parts of Guangdong Province),many small stocks occur in the southern part of Jiangxi Province.Most of the small stocks are associated closely with economically significant rare-metal deposits(W,Sn,Nb,Ta).Here we report the results for biotite granites and two-mica granites from three Yanshanian stocks of the Longyuanba complex.LA-ICPMS U-Pb dating of zircon yields an age of 156.1±2.1 Ma for Xiaomubei biotite granite,and U-Pb zircon dating using SIMS yields an age of 156.7±1.2 Ma for Longyuanba-Chengjiang biotite granite and 156.4±1.3 Ma for Jiangtoudong two-mica granite.Biotite granites are silica-rich(SiO 2 =70%-79%),potassic(K 2 O/Na 2 O>1.9),and peraluminous(ASI=1.05-1.33).Associated samples are invariably enriched in Rb,Th,Pb and LREE,yet depleted in Ba,Nb,Sr,P and Ti,and their REE pattern shows a large fractionation between LREE and HREE((La/Yb) N =10.7-13.5) and a pronounced Eu negative anomaly(δEu=0.28-0.41).Two-mica granite samples are also silica-rich(SiO 2 =75%-79%),potassic(K 2 O/Na 2 O>1.2),and peraluminous(ASI=1.09-1.17).However,in contrast to the biotite granites,they are more enriched in Rb,Th,Pb and extremely depleted in Ba,Nb,Sr,P and Ti,and exhibit nearly flat((La/Yb) N =0.75-1.08) chondrite-normalized REE patterns characterized by strong Eu depletion(δEu=0.02-0.04) and clear tetrad effect(TE 1.3 =1.10-1.14).Biotite granites and two-mica granties have comparable Nd isotopic signatures,and their εNd(t) are concentrated in the 13.0 to 9.6 and 11.5 to 7.7 respectively.Their zircon Hf-O isotopes of both also show similarity(biotite granites:εHf(t)= 10.8-7.9,δ 18 O=7.98‰-8.89‰ and εHf(t)= 13.8 to 9.1,δ 18 O=8.31‰-10.08‰;two-mica granites:εHf(t)= 11.3 to 8.0,δ 18 O=7.91‰-9.77‰).The results show that both biotite and two-mica granites were derived mainly from sedimentary source rocks with a minor contribution from mantle-derived materials.In spite of some S-type characteristics,the biotite granites were formed by fractional crystallization of I-type magma and assimilation of peraluminous sedimentary rocks during their ascent to the surface.Therefore,they belong to highly fractionated I-type granites.Two-mica granites exhibit a tetrad effect in their REE patterns,but share the same isotopic features with the biotite granites,suggesting that they are highly fractionated I-type granites as well.Their Lanthanide tetrad effects may be attributed to the hydrothermal alteration by magmatic fluids that have suffered degassing at late stages.Granitic magmas undergoing fractional crystallization and wall-rock assilimation can generate highly evolved granites with no REE tetrad effect in the uni-phase system.However,in the late-stage of magmatic evolution in the multi-phase system(i.e.,magmatic-hydrothermal system),these magmas also can lead to the highly evolved granites exhibiting mew-shaped REE pattern characterized by tetrad effect as the consequence of melt-fluid and fluid-vapor fractionation,and the resultant autometasomatism.We thus suggest that the REE pattern exhibiting tetrad effect feature is an important indicator of rare metal mineralization in the early Yanshanian time in southern China,implying the metamorphism of the ore fluid.
基金supported by the State Key R&D Project of China(Grant No.2016YFC0600203)the National Natural Science Foundation of China(Grant No.41672052,41272074)
文摘Yanshanian magmatisms are intensive in the southern Anhui Province and can be divided into early (152-137 Ma) and late (136-122 Ma) stages. A Yanshanian granitic zone was found to crop out along Qingshan to Changgai areas in the Ttmxi district in Field investigation which has a genetic link with molybdenum multiple metal mineralization. To be a representative syenitic granite in the southern Anhui Province, the Huangshan pluton has not been found so far to have any genetic link with mineralization. Zircon LA-ICP-MS dating indicate that the four granitic bodies from the Qingshan-Changgai zone have concurrent formed ages from 140~:4 to 141~2 Ma, belonging to the Yanshanian early stage magmatism. However, the Huangshan granite is dated to be 12912 Ma, belonging to the Yanshanian late stage magmatism. The Qingshan-Changgai granites show high SiO2 and K20 contents, low P205 contents and middle A12O3 contents and are high-K calc-alkaline series metaluminum I-type granite. These rocks are characterized by enrichments in the large ion lithophile elements and light rare earth elements (REE), depletions in the high field-strength elements, and middle degree negative anomalies of Eu, geochemical features of arc or continent crustal derived magma affinities. These rocks have 87Sr/StSr(t) ratios from 0.7120 to 0.7125,εNd(t) values from -7.24 to -4.38 and zircon εHf(t) values of -4.4 to 6.7, similar to that of the coeval ore-bearing granodiorites in the southern Anhui Province. Integrated geochemical studies indicate that the Yanshanian ore-bearing granodiorites were formed by partial melting of the Meso-Neoproterozoic accreted thickened low crust. Meanwhile, the Qingshan-Changgai granites were formed through a AFC process of plagioclase+amphibole+Shangxi Group of magmas that formed the ore-bearing granodiorites. The Huangshan granites are characterized by high SiOz and K2O contents, moderate Al2O3 contents, seagull shape REE distributed pattern and distinct Eu negative abnormities. Comparing with the Qingshan-Changgai granites, the Huangshan granites show more Ba, Sr, P, and Ti negative abnormities with no Nb and Ta depletions and are high-K calc-alkaline series metaluminum A-type granite, εHr(t) values of the Huangshan granites are from -6.6 to -1.2, similar to that of the early stage ore-bearing granodiorites, indicating that they were also formed by anatexis of the Meso-Neoproterozoic accreted crust, but their magma sources might be residual granulitic crust which ever underwent Yanshanian early stage I-type intermediate-acid magma extraction. Comparing studies on the two stages granites indicate that the early stage granites derived from a relative thickened low crust under a lower temperature condition. Their magma sources were Meso-Neoproterozoic accreted crust which enriched in ore-forming materials and further became more enriched through processes of magma AFC evolution. However, the late stage A-type granites originated from relative shallow crust under a higher temperature condition. Their magma source was depleted in ore-forming materials due to the early stage magma extraction and thus had weak ore-forming capacity. From early to late stage, the magmatisms tectonic setting translated from post-orogenic to anorogenic and the later corresponded to a back-arc extensional setting as increase of the slab subducted angle of the Paleo-Pacific plate.
基金supported by the National Basic Research Program of China(Grant No.2012CB416701)National Natural Science Foundation of China(Grant Nos.41330208+3 种基金41572200)National Science and Technology Support Program(Grant No.2011BAB04B02)the Jiangxi Geological Exploration Fund(Grant No.20100112)Jiangxi Science and Technology Project(Grant No.20122BBG70068)
文摘The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".