[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic...[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic dark condition for researching on nutrient release. The N(nitrogenous) and P(phosphorous) release were analyzed every two days.[Result] At the prophase, the N release in B was bigger than that in A, while the decline sediment release in A was gentle.[Conclusion] There was no accumulation of organic compound during the breeding time. The NH4-N was the main form of N release; and the P release was correlated with N release, while PO4-P was the main form of P release.展开更多
Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied...Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied, with the aim to provide the theory basis for the remediation of secondary salinization soil. Results showed that the content of soil K-, Mg2+, CI- and the total salinity were increased, with the increasing concentrations of nutrient solution, while Na+, Ca2+ and HCO3- contents were reduced. Compared with originals oil, soil K+, Na+, Ca2+, Mg2+, CI- and total soil salinity were decreased, and HCO3- and SO42 were increased. In terms of the variation of soil total charge, the change ranges in 1:1 treatment varied small, but the residual of soil cationic decreased with increasing application of K+ in the 2:1 treatment. It could be concluded that balanced and low application fertilizer could alleviate the soil saline, decrease the soil nutrition leaching and improve the balance among ions, while excess fertilization could accelerate the imbalance of zwitterions.展开更多
Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/kill...Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/killing marine mammals, birds and human). Among the various control strategies for HABs(physical manipulation needs lots of manpower and expensive equipment, chemicals treatment has some toxic byproduct and high residual, microbial agents only has limited in laboratory research), the coagulation-flocculation of HAB species by modified clay(MC) has been proven to be an effective, lowcost and environmentally friendly method that has been widely applied in the field, particularly in eastern Asia. In order to examine the long-term effects of MC treatment, this study investigated the alternations in seawater of Skeletonema costatum, a high biomass dominant HAB species along the Chinese coast, by comparing the degradation of S. costatum detritus(A1) with the application of MC treatment(A2) and MC treatment in sediment condition(A3). The low dosage of 0.25 g/L MC could efficiently remove 4×108 cells/L of S. costatum cells within 3.5 h(approximately 97% removal). In addition, the results showed that both inorganic and organic nutrients were effectively reduced from seawater by MC particles. Compared to the total nitrogen(TN) and total phosphorus(TP) concentrations in A1 seawater, 44% of TN and 93% of TP in A2 seawater, as well as 72% of TN and 93% of TP in A3 seawater were removed during the onemonth incubation period. Simultaneously, 64% of DISi in A2 and 44% of DISi in A3 significantly decreased( P <0.001). This study demonstrated that MC treatment was able to significantly increase the downward flux of nutrients and delay the release velocity of inorganic nutrient from MC-algae matrix into the overlying seawater, particularly within sediment environment.展开更多
To model Skeletonema costatum blooms and their relationship with environmental parameters in situ, a S. costatum-specific zero-dimensional box model based on the mechanistic model Eco3M was established using physiolog...To model Skeletonema costatum blooms and their relationship with environmental parameters in situ, a S. costatum-specific zero-dimensional box model based on the mechanistic model Eco3M was established using physiological features. The parameters were calibrated using experimental counterparts, and simulations were compared with published laboratory findings. The resulting normalized objective function (NOF) values are less than 1.0 (and in most cases less than 0.58) and the values for the slope y (between 0.656 7-1.127 4) and R2 (between 0.806 8-0.971) are close to 1.0 for most of the sub-figures. This indicates good agreement between simulated and measured data and suggests that the model reproduces the general characteristics of S. costatum growth and use of nutrients under different N- or P-limiting conditions. The model is appropriate for further applications and can be used to test more scenarios using other nutrients.展开更多
This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the install...This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the installation used to implement it are described and the associated advantages regarding the reduction in the level of eutrophication are highlighted. The hydraulic installation for improving the quality of water from lakes, basins, reservoirs or slow flowing rivers was designed and tested in our hydraulics laboratory during a research project. It is floatable, environmentally friendly, and energetically autonomous, being powered by photovoltaic panels, which together with rechargeable batteries can assure a continuous operation. This installation could also be used in early stages of wastewater treatment. Experimental results regarding the performance curves of the hydraulic installation are also presented.展开更多
The shipping industry is one of the biggest industries throughout the ages. Maritime transport plays a vital role in world economy; whereas competition between maritime companies is fierce [1], at the same time agreem...The shipping industry is one of the biggest industries throughout the ages. Maritime transport plays a vital role in world economy; whereas competition between maritime companies is fierce [1], at the same time agreements of co-operation have taken different forms including alliances and mergers between companies to increase their market share. But competitions still stand despite all alliances even in same market. This intense competition drives companies to attain high level of competitiveness, by monitoring ship's operating performance and operating cost, emphasis on improving performance and reduce cost. On other hand new environmental regulations come to light, expansion of ECA (emission control areas), which lead to significant higher fuel cost when using low sulfur fuel. Since the fuel cost is the largest portion of the operating cost of the vessel, a saving in fuel usage can result in considerable saving in operational costs. Furthermore, fuel saving has environmental benefits in the reduction of greenhouse gas emissions. The aim of this paper is to investigate the role of trim optimization which considers one of the easiest and cheapest methods for ship performance optimization and fuel consumption reduction trim optimization.展开更多
Microalgae have been recommended as superior candidate for fuel production because of their advantages of higher photosynthetic efficiency, biomass & lipid productivity, and faster growth rate as compared to other...Microalgae have been recommended as superior candidate for fuel production because of their advantages of higher photosynthetic efficiency, biomass & lipid productivity, and faster growth rate as compared to other energy crops. To meet up all these criteria, we have developed a continuous outdoor micro-algal raceway pond reactor(RPR) and a lab scale indoor tubular photo bioreactor(PBR) for biofuel production. An attempt to utilise indigenous sources of nutrients to improve the economics also revealed that micro-algal culturing can also be used as a mode of nutrient removal and water treatment. The photosynthetic rate and lipid production were enhanced by arresting daytime cell division and promoting night-time cell division. A 50% lipid improvement was observed for the particular algal consortia. Microscopic studies revealed that temporal phase separation could be achieved by adjusting nutrient distribution pattern. To monitor temporal phase separation, it is required to know DNA multiplication model. Quantification of g DNA in RPR confirmed that cell division happens during the night which positively affects the photosynthetic efficiency and lipid productivity of microalgae.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program)(2007AA10Z239)the National Key Technology R&D Program(2006BAD03B0102)+2 种基金the Natural Science Foundation of Guangdong Province(5004159)Scienceand Technology Planning Project of Guangdong Province(2005N33201012)the Open Fund of Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes,Ministry of Agriculture(BM2007-03)~~
文摘[Objective] The study aimed to research the nutrients release of ponds sediment.[Method] The sediments which from a new pond(A) and an old one (B) these analyses used to carry out indoor experiment under the anaerobic dark condition for researching on nutrient release. The N(nitrogenous) and P(phosphorous) release were analyzed every two days.[Result] At the prophase, the N release in B was bigger than that in A, while the decline sediment release in A was gentle.[Conclusion] There was no accumulation of organic compound during the breeding time. The NH4-N was the main form of N release; and the P release was correlated with N release, while PO4-P was the main form of P release.
基金Supported by the Science and Technology Development Project in Weifang(2015GX078 and 2013YD182)~~
文摘Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied, with the aim to provide the theory basis for the remediation of secondary salinization soil. Results showed that the content of soil K-, Mg2+, CI- and the total salinity were increased, with the increasing concentrations of nutrient solution, while Na+, Ca2+ and HCO3- contents were reduced. Compared with originals oil, soil K+, Na+, Ca2+, Mg2+, CI- and total soil salinity were decreased, and HCO3- and SO42 were increased. In terms of the variation of soil total charge, the change ranges in 1:1 treatment varied small, but the residual of soil cationic decreased with increasing application of K+ in the 2:1 treatment. It could be concluded that balanced and low application fertilizer could alleviate the soil saline, decrease the soil nutrition leaching and improve the balance among ions, while excess fertilization could accelerate the imbalance of zwitterions.
基金Supported by the National Natural Science Foundation of China(No.41276115)the National Basic Research Program of China(973 Program)(No.2010CB428706)the Fund for Creative Research Groups by NSFC(No.41121064)
文摘Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/killing marine mammals, birds and human). Among the various control strategies for HABs(physical manipulation needs lots of manpower and expensive equipment, chemicals treatment has some toxic byproduct and high residual, microbial agents only has limited in laboratory research), the coagulation-flocculation of HAB species by modified clay(MC) has been proven to be an effective, lowcost and environmentally friendly method that has been widely applied in the field, particularly in eastern Asia. In order to examine the long-term effects of MC treatment, this study investigated the alternations in seawater of Skeletonema costatum, a high biomass dominant HAB species along the Chinese coast, by comparing the degradation of S. costatum detritus(A1) with the application of MC treatment(A2) and MC treatment in sediment condition(A3). The low dosage of 0.25 g/L MC could efficiently remove 4×108 cells/L of S. costatum cells within 3.5 h(approximately 97% removal). In addition, the results showed that both inorganic and organic nutrients were effectively reduced from seawater by MC particles. Compared to the total nitrogen(TN) and total phosphorus(TP) concentrations in A1 seawater, 44% of TN and 93% of TP in A2 seawater, as well as 72% of TN and 93% of TP in A3 seawater were removed during the onemonth incubation period. Simultaneously, 64% of DISi in A2 and 44% of DISi in A3 significantly decreased( P <0.001). This study demonstrated that MC treatment was able to significantly increase the downward flux of nutrients and delay the release velocity of inorganic nutrient from MC-algae matrix into the overlying seawater, particularly within sediment environment.
基金Supported by the National Natural Science Foundation of China(Nos.40821004,41276186)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-Q07-02)
文摘To model Skeletonema costatum blooms and their relationship with environmental parameters in situ, a S. costatum-specific zero-dimensional box model based on the mechanistic model Eco3M was established using physiological features. The parameters were calibrated using experimental counterparts, and simulations were compared with published laboratory findings. The resulting normalized objective function (NOF) values are less than 1.0 (and in most cases less than 0.58) and the values for the slope y (between 0.656 7-1.127 4) and R2 (between 0.806 8-0.971) are close to 1.0 for most of the sub-figures. This indicates good agreement between simulated and measured data and suggests that the model reproduces the general characteristics of S. costatum growth and use of nutrients under different N- or P-limiting conditions. The model is appropriate for further applications and can be used to test more scenarios using other nutrients.
文摘This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the installation used to implement it are described and the associated advantages regarding the reduction in the level of eutrophication are highlighted. The hydraulic installation for improving the quality of water from lakes, basins, reservoirs or slow flowing rivers was designed and tested in our hydraulics laboratory during a research project. It is floatable, environmentally friendly, and energetically autonomous, being powered by photovoltaic panels, which together with rechargeable batteries can assure a continuous operation. This installation could also be used in early stages of wastewater treatment. Experimental results regarding the performance curves of the hydraulic installation are also presented.
文摘The shipping industry is one of the biggest industries throughout the ages. Maritime transport plays a vital role in world economy; whereas competition between maritime companies is fierce [1], at the same time agreements of co-operation have taken different forms including alliances and mergers between companies to increase their market share. But competitions still stand despite all alliances even in same market. This intense competition drives companies to attain high level of competitiveness, by monitoring ship's operating performance and operating cost, emphasis on improving performance and reduce cost. On other hand new environmental regulations come to light, expansion of ECA (emission control areas), which lead to significant higher fuel cost when using low sulfur fuel. Since the fuel cost is the largest portion of the operating cost of the vessel, a saving in fuel usage can result in considerable saving in operational costs. Furthermore, fuel saving has environmental benefits in the reduction of greenhouse gas emissions. The aim of this paper is to investigate the role of trim optimization which considers one of the easiest and cheapest methods for ship performance optimization and fuel consumption reduction trim optimization.
基金part of CSIR-NMITLI project“Biofuel from marine microalgae”,at NIIST by Dr.Ajit Haridas
文摘Microalgae have been recommended as superior candidate for fuel production because of their advantages of higher photosynthetic efficiency, biomass & lipid productivity, and faster growth rate as compared to other energy crops. To meet up all these criteria, we have developed a continuous outdoor micro-algal raceway pond reactor(RPR) and a lab scale indoor tubular photo bioreactor(PBR) for biofuel production. An attempt to utilise indigenous sources of nutrients to improve the economics also revealed that micro-algal culturing can also be used as a mode of nutrient removal and water treatment. The photosynthetic rate and lipid production were enhanced by arresting daytime cell division and promoting night-time cell division. A 50% lipid improvement was observed for the particular algal consortia. Microscopic studies revealed that temporal phase separation could be achieved by adjusting nutrient distribution pattern. To monitor temporal phase separation, it is required to know DNA multiplication model. Quantification of g DNA in RPR confirmed that cell division happens during the night which positively affects the photosynthetic efficiency and lipid productivity of microalgae.