期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于岩块轮廓属性的爆堆图像自适应分割方法 被引量:1
1
作者 郭钦鹏 相志斌 +2 位作者 杨仕教 王昱琛 尹裕 《工程爆破》 CSCD 北大核心 2023年第5期64-71,共8页
针对爆堆岩块图像中因粘连、堆叠、边缘模糊等造成的错误分割问题,提出基于岩块轮廓属性的爆堆图像自适应分割方法。首先对爆堆图像进行预处理,然后采用Phansalkar方法进行二值分割,并采用形态学优化和面积滤波去除噪点,再利用爆堆岩块... 针对爆堆岩块图像中因粘连、堆叠、边缘模糊等造成的错误分割问题,提出基于岩块轮廓属性的爆堆图像自适应分割方法。首先对爆堆图像进行预处理,然后采用Phansalkar方法进行二值分割,并采用形态学优化和面积滤波去除噪点,再利用爆堆岩块的轮廓坚实度和迭代腐蚀相结合的方法来标记种子点,最后基于标记的种子点利用分水岭算法对图像进行分割。将该方法用于爆堆图像分割,种子点标记结果表明基于岩块轮廓坚实度的种子点标记方法可避免部分噪点的影响,提高对爆堆岩块标记效率。分割结果表明该方法获得的面积累计曲线与人工分割的面积累计曲线高度相似,3个特征面积参数的最大相对误差仅为4.32%,对于100 cm 2以上的岩块,分割准确率为98.33%。相较于其他用于岩块分割的分水岭改进方法有效地减小了错误分割的可能,实现了基于岩块灰度特征和轮廓特征的爆堆图像高精度自适应分割。 展开更多
关键词 爆堆图像 Phansalkar 岩块轮廓 种子点标记 分水岭算法
下载PDF
基于U-Net和改进分水岭算法的露天矿爆堆矿石图像分割方法 被引量:3
2
作者 阚玉达 《金属矿山》 CAS 北大核心 2023年第8期272-277,共6页
爆破大块率是反映爆破效果的关键指标,其统计精度主要依赖于爆堆矿石图像分割的准确性。由于爆堆矿石图像中存在矿石目标分布密集、边缘对比度低等问题,致使传统图像分割方法难以准确分割爆堆矿石图像。因此,提出了一种基于U-Net和改进... 爆破大块率是反映爆破效果的关键指标,其统计精度主要依赖于爆堆矿石图像分割的准确性。由于爆堆矿石图像中存在矿石目标分布密集、边缘对比度低等问题,致使传统图像分割方法难以准确分割爆堆矿石图像。因此,提出了一种基于U-Net和改进分水岭算法的露天矿爆堆矿石图像分割方法,以实现大块率的精准统计。首先利用无人机在哑巴岭露天矿爆破现场拍摄爆堆矿石图像,制作爆堆矿石图像数据集;然后利用深度学习算法建立了UNet网络架构,同时融合了高级语义信息和低级语义信息,建立了爆堆矿石图像分割模型,再利用训练后的模型对爆堆矿石图像进行初步分割,进一步采用基于距离运算的分水岭算法优化了分割结果;最后评估了该方法的分割精度。试验结果表明:该算法可准确分割露天矿爆堆矿石图像,为露天矿爆破大块率统计、爆破效果智能评价提供技术支持。 展开更多
关键词 U-Net网络 分水岭算法 矿石图像分割 破大块率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部