In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpres...In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.展开更多
The loads of shock wave effect on fabricated anti-blast wail and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on t...The loads of shock wave effect on fabricated anti-blast wail and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites, as well as in the comparison between the test and numerical calculation. The test results show that the loads of shock wave effect on the anti-blast wall were es- sen-tially consistent with calculation results using criterion under surface explosion when explosion dis- tances exceed 2 m, the distribution of overpressure behind wall was gained according to variety law based on small-large-small. It is also demonstrated that the peak overpressure behind wall had com- monly appeared in wall height by 1.5--2.5 multiples, and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.展开更多
It' s a problem to be solved how to de-noise the signal of blast shock wave overpressure. In the conventional methods, the high frequency of the signal is cut directly by some mathematics algorithms, such as Fourier ...It' s a problem to be solved how to de-noise the signal of blast shock wave overpressure. In the conventional methods, the high frequency of the signal is cut directly by some mathematics algorithms, such as Fourier Transform, but some of the useful signal will be cut together. We adopt a new method for the signal de-noising of shock wave overpressure by wavelet analysis, There are four steps in this method. Firstly, the original signal is de-compoed. Then the time-frequency features of the signal and noise are analyzed. Thirdly, the noise is separated from the signal by only cutting its frequency while the useful signal frequency is reserved as much as possible. Lastly, the useful signal with least loss of information is recovered by reconstruction process. To verify this method, a blast shock wave signal is de-noised with FFF to make a comparison. The results show that the signal de-noised by wavelet analysis approximates the ideal signal well.展开更多
文摘In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.
基金Supported by National Natural Science Foundation of China(No.50578082,No.50678094)
文摘The loads of shock wave effect on fabricated anti-blast wail and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites, as well as in the comparison between the test and numerical calculation. The test results show that the loads of shock wave effect on the anti-blast wall were es- sen-tially consistent with calculation results using criterion under surface explosion when explosion dis- tances exceed 2 m, the distribution of overpressure behind wall was gained according to variety law based on small-large-small. It is also demonstrated that the peak overpressure behind wall had com- monly appeared in wall height by 1.5--2.5 multiples, and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.
文摘It' s a problem to be solved how to de-noise the signal of blast shock wave overpressure. In the conventional methods, the high frequency of the signal is cut directly by some mathematics algorithms, such as Fourier Transform, but some of the useful signal will be cut together. We adopt a new method for the signal de-noising of shock wave overpressure by wavelet analysis, There are four steps in this method. Firstly, the original signal is de-compoed. Then the time-frequency features of the signal and noise are analyzed. Thirdly, the noise is separated from the signal by only cutting its frequency while the useful signal frequency is reserved as much as possible. Lastly, the useful signal with least loss of information is recovered by reconstruction process. To verify this method, a blast shock wave signal is de-noised with FFF to make a comparison. The results show that the signal de-noised by wavelet analysis approximates the ideal signal well.