以3~#航空煤油为研究对象,通过可燃气体/蒸气爆炸极限测试装置测定航空煤油蒸气的爆炸参数,研究低压条件对航空煤油蒸气爆炸极限和爆炸压强的影响。初始环境压力设置为90、70、50 k Pa,温度设置为90℃,其他因素相同。通过实验研究不同...以3~#航空煤油为研究对象,通过可燃气体/蒸气爆炸极限测试装置测定航空煤油蒸气的爆炸参数,研究低压条件对航空煤油蒸气爆炸极限和爆炸压强的影响。初始环境压力设置为90、70、50 k Pa,温度设置为90℃,其他因素相同。通过实验研究不同低压状态下航空煤油的最大爆炸压强与相应的航空煤油蒸气体积分数的变化,以及在相同低压状态下最大爆炸压强与体积分数和爆炸所需时间的关系。随着航空煤油蒸气体积分数的增加,产生的最大爆炸压强先增加后减小。在初始压强一定的情况下,爆炸所需时间越长,爆炸产生的最大压强越低。展开更多
In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to tra...In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.展开更多
With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures...With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures from being destroyed,but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explo-sions.The explosion process has been studied for many years towards the safety of chemical in-dustry equipments.The key problem of these studies was the equations usually involved some ad-justable parameters that must be evaluated by experimental data,and the procedure of calculation was extremely complicated,so the reliability of these studies was seriously limited.Based on these studies,a simple mathematical model was established in this paper by using energy conservation,mass conservation,gas state equation,adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor,so the pressure-time curve could be obtained.By using this method,complicated calculation was avoided,while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to inves-tigate the influences of different ignition locations,gas thickness,concentration,room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous con-dition when being ignited in the geometry centre of the room; the greater the burning velocity,the worse the venting effect; the larger the venting pressure,the higher the peak pressure; the larger the venting area,the lower the peak pressure.展开更多
The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and it...The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.展开更多
文摘以3~#航空煤油为研究对象,通过可燃气体/蒸气爆炸极限测试装置测定航空煤油蒸气的爆炸参数,研究低压条件对航空煤油蒸气爆炸极限和爆炸压强的影响。初始环境压力设置为90、70、50 k Pa,温度设置为90℃,其他因素相同。通过实验研究不同低压状态下航空煤油的最大爆炸压强与相应的航空煤油蒸气体积分数的变化,以及在相同低压状态下最大爆炸压强与体积分数和爆炸所需时间的关系。随着航空煤油蒸气体积分数的增加,产生的最大爆炸压强先增加后减小。在初始压强一定的情况下,爆炸所需时间越长,爆炸产生的最大压强越低。
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Natural Science Foundation of China (No.50534090)+3 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology R&D Program (No.2007BAK29B01) Research Innovation Program for College Graduates of Jiangsu Provincethe Open Foundation of State Key Laboratory of Explosion Science and Technology (No.KFJJ10-19M)
文摘In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.
文摘With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures from being destroyed,but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explo-sions.The explosion process has been studied for many years towards the safety of chemical in-dustry equipments.The key problem of these studies was the equations usually involved some ad-justable parameters that must be evaluated by experimental data,and the procedure of calculation was extremely complicated,so the reliability of these studies was seriously limited.Based on these studies,a simple mathematical model was established in this paper by using energy conservation,mass conservation,gas state equation,adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor,so the pressure-time curve could be obtained.By using this method,complicated calculation was avoided,while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to inves-tigate the influences of different ignition locations,gas thickness,concentration,room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous con-dition when being ignited in the geometry centre of the room; the greater the burning velocity,the worse the venting effect; the larger the venting pressure,the higher the peak pressure; the larger the venting area,the lower the peak pressure.
基金Supported by the National Natural Science Foundation of China (51004048) the Research Fund of State Key Laboratory of Coal Resources and Safe Mining, CUMT(09KF05)+2 种基金 the Post-Doctoral Science Foundation of China (20100470998) the Scientific Research Fund of Hunan Provincial Education Department(09C409) the State Key Base Development Plan(2005cb221506)
文摘The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.