期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双金属爆炸焊接参数设计理论 被引量:14
1
作者 李晓杰 王宇新 +1 位作者 王小红 闫鸿浩 《工程爆破》 CSCD 2020年第5期1-13,共13页
针对爆炸焊接参数设计问题,从爆炸焊接基本理论出发,分步介绍了飞板爆轰驱动的理论和双金属爆炸焊接窗口理论。首先归纳总结了一维爆轰驱动飞板的终速公式,并详细说明了其应用范围与原因。对于二维滑移爆轰驱动飞板问题,主要针对Richte... 针对爆炸焊接参数设计问题,从爆炸焊接基本理论出发,分步介绍了飞板爆轰驱动的理论和双金属爆炸焊接窗口理论。首先归纳总结了一维爆轰驱动飞板的终速公式,并详细说明了其应用范围与原因。对于二维滑移爆轰驱动飞板问题,主要针对Richter理论和特征线法进行了介绍,并推导出新的近似计算公式。接着,对于爆炸焊接参数窗口理论,详细比较了以往传统单一金属爆炸焊接窗口理论与公式,并针对部分已有公式进行了重新推导与修正,重新界定了其适用范围。利用这些爆炸焊接窗口的基本理论,作者对所发展的双金属可焊下限、双金属可焊上限、双金属流动限以及声速限构成的双金属爆炸焊接窗口理论进行了系统地介绍。最后,以飞板爆轰驱动和爆炸焊接窗口构建成了整个爆炸焊接工艺技术参数设计理论,并结合二元合金相图进行爆炸焊接设计,针对调控原材料硬度的必要性、焊接界面波纹及气孔的控制方法等问题进行了讨论。 展开更多
关键词 爆炸 爆炸加工 爆炸 爆炸焊合 爆炸接窗口
下载PDF
Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding 被引量:12
2
作者 Ming YANG Hong-hao MA +2 位作者 Zhao-wu SHEN Dai-guo CHEN Yong-xin DENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期680-691,共12页
In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure ... In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure and mechanical properties of the meshing interfaces were systematically investigated.The microstructure observation showed that metallurgical bonding without pores was created in the form of direct bonding and melting zone bonding at the interface.Fractography on tensile specimens showed cleavage fracture on the steel side and ductile fracture on the aluminum side near the interfaces.The tensile shear test results indicated that the shear strength of the meshing interface 0°and 90°was increased by 11%and 14%,respectively,when being compared to that of the ordinary Al.Fe transition joints.The values of microhardness decreased as the distance from the interface increased.After three-point bending,cracks were observed at the bonding interface for some specimens due to the existence of brittle Fe.Al compounds. 展开更多
关键词 explosive welding meshing interface ALUMINUM stainless steel
下载PDF
Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze–carbon steel 被引量:5
3
作者 KHANZADEH GHARAHSHIRAN Mohammad Reza KHOSHAKHLAGH Ali +2 位作者 KHALAJ Gholamreza BAKHTIARI Hamid BANIHASHEMI Ali Reza 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1849-1861,共13页
The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff... The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased. 展开更多
关键词 heat treatment explosive welding intermetallic compound standoff distance diffusion layer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部