This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup...This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup, four PMMA plate specimens with pre-existing cracks under different static loading and the same dynamic loading were tested to observe the mechanical characteristics and the kinematic characteristics of blast-induced wing cracks during the propagation process, including crack length, crack velocity and dynamic stress intensity factor(SIF) at the crack tip. The results show that the behavior of the blast-induced wing crack is affected by the explosion stress wave and initial static stress, and the initial static stress with the direction being perpendicular to the wing crack propagation direction hinders crack propagation. Furthermore, the boundary constraint condition of the specimen plays an important role on the behavior of the crack propagation in the experiment.展开更多
CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractu...CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.展开更多
In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier...In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier to propagate and connect under blasting load. This paper focuses on the calculation on dynamic stress intensity factors of bond interface crack of concrete-rock according to concrete age. Result shows that different incidence angles of stress wave lead to different crack propagation mechanisms. Under the normal incidence of impact load,the bonding interface crack propagation of the concrete lining is mainly caused by reflection tensile stress,which forms from the free surface. With horizontal incidence of stress wave,the bond interface crack propagation of concrete lining is affected by concrete age. With the increase of concrete age,the elasticity modulus margin between concrete and rock decreases gradually,and the crack propagation form changes from shear failure to tensile damage.展开更多
Dynamic crack propagation in brittle materials plays an important role in unJerstanding the fracture mechanism.Numerical simulations on crack propagation in the polymethyle methacrylate(PMMA)under explosive loads were...Dynamic crack propagation in brittle materials plays an important role in unJerstanding the fracture mechanism.Numerical simulations on crack propagation in the polymethyle methacrylate(PMMA)under explosive loads were carried out through Autodyn 3D code.Although the Johnson-Holmquist(JH-2)constitutive model has been widely treated as an acceptable scheme,it cannot improve the description in the post-failure response of material and reduce the mesh dependency,so the crack softening failure model are introduced in our present work based on two failure criterions.First,material parameters of JH-2 model,failure criterion,and crack softening failure model are determined from available data and calculations.The circular and rectangle thin plates are modeled to explore the fracture mechanisms for single-borehole and dual-borehole explosions.The simulation results well reproduced the entire dynamic evolutionary process of the crushed and fractured zones,crack initiation,propagation and arrest as well as secondary propagation,which successfully proved the relibilities of the combination of JH-2 constitutive model,failure criterion,and crack softening failure model and corresponding material parameters.For dual-borehole explosion,the crack linkage is well performed when borehole distance L is 20 and 30 cm;cracks are failed to link with each other at L=40 cm although main cracks have arrived into the opposite fractured zone.More importantly,it is found that the crack linkage mainly depends on L,which has an important effect on linkage style and its location.Despite a larger L makes more difficult in crack linkage,this difficulty lies not in the shortage of crack length,but in losing control of directional fracture of cracks between two boreholes.展开更多
基金the financial support received from the PhD Programs Foundation of Ministry of Education of China (No. 20120023120020)the National Natural Science Foundation of China (No. 51134025)
文摘This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup, four PMMA plate specimens with pre-existing cracks under different static loading and the same dynamic loading were tested to observe the mechanical characteristics and the kinematic characteristics of blast-induced wing cracks during the propagation process, including crack length, crack velocity and dynamic stress intensity factor(SIF) at the crack tip. The results show that the behavior of the blast-induced wing crack is affected by the explosion stress wave and initial static stress, and the initial static stress with the direction being perpendicular to the wing crack propagation direction hinders crack propagation. Furthermore, the boundary constraint condition of the specimen plays an important role on the behavior of the crack propagation in the experiment.
文摘CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.
基金The National Natural Science Foundation of China(No.50774056)Scientific Research Fund of Wuhan University of Science and Technology(No.080068)
文摘In the construction of water conservancy and hydropower project,young concrete lining structure is often affected by blasting load. Young concrete has a lot of micro-fractures with random distribution,which are easier to propagate and connect under blasting load. This paper focuses on the calculation on dynamic stress intensity factors of bond interface crack of concrete-rock according to concrete age. Result shows that different incidence angles of stress wave lead to different crack propagation mechanisms. Under the normal incidence of impact load,the bonding interface crack propagation of the concrete lining is mainly caused by reflection tensile stress,which forms from the free surface. With horizontal incidence of stress wave,the bond interface crack propagation of concrete lining is affected by concrete age. With the increase of concrete age,the elasticity modulus margin between concrete and rock decreases gradually,and the crack propagation form changes from shear failure to tensile damage.
基金the Key Research Foundation of Education Bureau of Sichuan Province(Grant No.17zd1122)the Natural Science Foundation of Southwest University of Science and Technology(Grant No.19zx7168)+2 种基金the Shock and Vibration of Engineering Materials and Struc-tures Key Laboratory of Sichuan Province(Grant No.I9kfgk07)the Sci-ence and Technology Department of Sichuan Province(Grant No.2021 YJ0525)National Natural Science Foundation of China(Grant No.11802255).
文摘Dynamic crack propagation in brittle materials plays an important role in unJerstanding the fracture mechanism.Numerical simulations on crack propagation in the polymethyle methacrylate(PMMA)under explosive loads were carried out through Autodyn 3D code.Although the Johnson-Holmquist(JH-2)constitutive model has been widely treated as an acceptable scheme,it cannot improve the description in the post-failure response of material and reduce the mesh dependency,so the crack softening failure model are introduced in our present work based on two failure criterions.First,material parameters of JH-2 model,failure criterion,and crack softening failure model are determined from available data and calculations.The circular and rectangle thin plates are modeled to explore the fracture mechanisms for single-borehole and dual-borehole explosions.The simulation results well reproduced the entire dynamic evolutionary process of the crushed and fractured zones,crack initiation,propagation and arrest as well as secondary propagation,which successfully proved the relibilities of the combination of JH-2 constitutive model,failure criterion,and crack softening failure model and corresponding material parameters.For dual-borehole explosion,the crack linkage is well performed when borehole distance L is 20 and 30 cm;cracks are failed to link with each other at L=40 cm although main cracks have arrived into the opposite fractured zone.More importantly,it is found that the crack linkage mainly depends on L,which has an important effect on linkage style and its location.Despite a larger L makes more difficult in crack linkage,this difficulty lies not in the shortage of crack length,but in losing control of directional fracture of cracks between two boreholes.