The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an impo...The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.展开更多
The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder c...The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0. 5 kg charge was detonated at a distance of 0. 1 m from the 1. 3 m × 1. 0 m × 0. 1 m (thick) panels, which were simply supported and spaning 1.3 m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a O. 5 kg charge, The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.展开更多
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)
文摘The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures.
文摘The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0. 5 kg charge was detonated at a distance of 0. 1 m from the 1. 3 m × 1. 0 m × 0. 1 m (thick) panels, which were simply supported and spaning 1.3 m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a O. 5 kg charge, The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.