A new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variati...A new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.展开更多
Although the CTBT (Comprehensive Nuclear Test Ban Treaty) was passed in 1996, it is still necessary to develop new and highly efficient methods (Wu Zhongliang, Chen Yuntai, et al., 1993; Xu Shaoxie, et al.1994; Richar...Although the CTBT (Comprehensive Nuclear Test Ban Treaty) was passed in 1996, it is still necessary to develop new and highly efficient methods (Wu Zhongliang, Chen Yuntai, et al., 1993; Xu Shaoxie, et al.1994; Richard L. Garwin, 1994) to monitor possible events. Many discrimination criteria (Xu Shaoxie, et al.,1994; Institute of Geophysics, Chinese Academy of Sciences, 1976; Richard L. Garwin, 1994) have been put forward since the 1950s. The results show that each of the existing criteria has its own limitation, but the seismological method is an important and efficient method in the discrimination between nuclear explosion and earthquake. Especially in recent years, because of the little and little equivalent as well as the increasing hiding steps used in the test, a number of more efficient seismological methods have been worked out. In this paper, a new discrimination method, the Wavelet Packet Component Ratio (WPCR) method, is put forward. This method makes full use of the difference in variation with time between the spectra of nuclear explosions and earthquakes. Its discrimination efficiency is rather high.展开更多
基金This work was supported by the National Key Research and Development program of China (No. 2016YFC0801406), Shandong Key Research and Development program (Nos. 2016ZDJS02A05 and 2018GGX 109013) and Shandong Provincial Natural Science Foundation (No. ZR2018MEE008).
文摘A new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.
文摘Although the CTBT (Comprehensive Nuclear Test Ban Treaty) was passed in 1996, it is still necessary to develop new and highly efficient methods (Wu Zhongliang, Chen Yuntai, et al., 1993; Xu Shaoxie, et al.1994; Richard L. Garwin, 1994) to monitor possible events. Many discrimination criteria (Xu Shaoxie, et al.,1994; Institute of Geophysics, Chinese Academy of Sciences, 1976; Richard L. Garwin, 1994) have been put forward since the 1950s. The results show that each of the existing criteria has its own limitation, but the seismological method is an important and efficient method in the discrimination between nuclear explosion and earthquake. Especially in recent years, because of the little and little equivalent as well as the increasing hiding steps used in the test, a number of more efficient seismological methods have been worked out. In this paper, a new discrimination method, the Wavelet Packet Component Ratio (WPCR) method, is put forward. This method makes full use of the difference in variation with time between the spectra of nuclear explosions and earthquakes. Its discrimination efficiency is rather high.