The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, whi...The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, which will result in nutational oscillatory effect. The oscillations contain a perturbation with the same frequency of EP violation signal, which is mitigated by two different methods as in Galileo Galilei (GG) mission and μSCOPE. In GG the sensor for readout is sensitive to differential forces in the orbital plane perpendicular to spin axis of test cylinders. In order to mitigate the nutational oscillatory effect, test mass should be rapidly rotated with the spin axis. However, in μSCOPE, the readout sensitive axis is the symmetry axis in the orbital plane. This nutational oscillation will produce a second order effect in the rotation amplitude at twice the signal frequency, and could be subtracted easily, too.展开更多
This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to intro...This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed. For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of , it obtains the same results about the four experimental tests of general relativity.展开更多
In general,heat transfers can be classified into two categories according to the purposes of object heating or cooling and the heat to work conversion.Recently,a new physical quantity,entransy(or potential energy),was...In general,heat transfers can be classified into two categories according to the purposes of object heating or cooling and the heat to work conversion.Recently,a new physical quantity,entransy(or potential energy),was proposed to describe the ability of heat transfer with the former purpose.This paper addresses the concept of potential energy in terms of the heat transfer processes for the latter purpose,named the conversion potential energy.The physical meaning of this newly introduced concept is the potential energy for the heat to work conversion stored in the equivalent mass of heat(thermomass) derived on the basis of the Einstein's special theory of relativity.The dissipation of conversion potential energy occurs during the real irreversible heat to work conversion processes as a measure of the conversion irreversibility.Finally,a heat to work conversion problem of a heat exchanger group is provided to show that the minimum conversion potential energy dissipation rate can be used as an optimization criterion for the heat transfer performance with the purpose of the heat to work conversion.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.10205005 and 10121503
文摘The significance of quadrupole gravitational force is discussed for test mass in equivalence principle (EP), and the angular moment acting on a cylindrically symmetrical body due to quadrupole force is calculated, which will result in nutational oscillatory effect. The oscillations contain a perturbation with the same frequency of EP violation signal, which is mitigated by two different methods as in Galileo Galilei (GG) mission and μSCOPE. In GG the sensor for readout is sensitive to differential forces in the orbital plane perpendicular to spin axis of test cylinders. In order to mitigate the nutational oscillatory effect, test mass should be rapidly rotated with the spin axis. However, in μSCOPE, the readout sensitive axis is the symmetry axis in the orbital plane. This nutational oscillation will produce a second order effect in the rotation amplitude at twice the signal frequency, and could be subtracted easily, too.
文摘This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed. For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of , it obtains the same results about the four experimental tests of general relativity.
基金supported by the NUAA Research Funding (Grant No. NS2012142)
文摘In general,heat transfers can be classified into two categories according to the purposes of object heating or cooling and the heat to work conversion.Recently,a new physical quantity,entransy(or potential energy),was proposed to describe the ability of heat transfer with the former purpose.This paper addresses the concept of potential energy in terms of the heat transfer processes for the latter purpose,named the conversion potential energy.The physical meaning of this newly introduced concept is the potential energy for the heat to work conversion stored in the equivalent mass of heat(thermomass) derived on the basis of the Einstein's special theory of relativity.The dissipation of conversion potential energy occurs during the real irreversible heat to work conversion processes as a measure of the conversion irreversibility.Finally,a heat to work conversion problem of a heat exchanger group is provided to show that the minimum conversion potential energy dissipation rate can be used as an optimization criterion for the heat transfer performance with the purpose of the heat to work conversion.