期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
局部对称的完备爱因斯坦黎曼流形的一个性质 被引量:1
1
作者 宣满友 《绍兴文理学院学报(哲学社会科学版)》 1998年第5期38-42,共5页
本文给出爱因斯坦黎曼流形为常截面曲率流形的一个充要条件,并用此结论得到局部对称的完备爱因斯坦黎曼流形的一个性质。
关键词 爱因斯坦黎曼流形 局部对称空间 全脐超曲面族 空间形式
下载PDF
黎曼流形中的柱形直纹超曲面
2
作者 宣满友 《绍兴文理学院学报(哲学社会科学版)》 1999年第6期30-35,共6页
本文举出了空间形式中柱形直纹超曲面的例子,讨论了空间形式中柱形直纹超曲面的性质和爱因斯坦黎曼流形中柱形直纹超曲面族的存在性问题.
关键词 柱形直纹超曲面 主方向 主曲率 空间形式 爱因斯坦黎曼流形
下载PDF
Quasi- Einstein Hypersurfaces in a Hyperbolic Space 被引量:1
3
作者 赵培标 宋鸿藻 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第2期49-52, ,共4页
In this paper,we consider quasi Einstein hypersurfaces in a hyperbolic space. The following theorem is obtained. Theorem Quasi Einstein hypersurfaces of a hyperbolic space are of constant curvature,where the dimension... In this paper,we consider quasi Einstein hypersurfaces in a hyperbolic space. The following theorem is obtained. Theorem Quasi Einstein hypersurfaces of a hyperbolic space are of constant curvature,where the dimension is large enough. 展开更多
关键词 quasi Einstein hypersurface hyperbolic space totally umbilic hypersurface
下载PDF
On Ricci tensor of focal submanifolds of isoparametric hypersurfaces 被引量:3
4
作者 LI QiChao YAN WenJiao 《Science China Mathematics》 SCIE CSCD 2015年第8期1723-1736,共14页
A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold an... A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold and a B-manifold. The present paper proves that both focal submanifolds of each isoparametric hypersurface in unit spheres with g = 4 distinct principal curvatures are A-manifolds. As for the focal submanifolds with g = 6, m = 1 or 2, only one is an A-manifold, and neither is a B-manifold. 展开更多
关键词 isoparametric hypersurface focal submanifold .A-manifold N-manifold
原文传递
Einstein Finsler metrics and Killing vector fields on Riemannian manifolds 被引量:2
5
作者 CHENG XinYue SHEN ZhongMin 《Science China Mathematics》 SCIE CSCD 2017年第1期83-98,共16页
We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics o... We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S^3 with Ric = 2F^2, Ric = 0 and Ric =-2F^2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not. 展开更多
关键词 Killing vector field Finsler metric (α β)-metric Ricci curvature Einstein metric Ricci-flat metric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部