期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进隐马氏模型的运动人体模型学习(英文) 被引量:1
1
作者 苏伯超 陈刚 车仁生 《光学精密工程》 EI CAS CSCD 北大核心 2009年第6期1485-1495,共11页
基于人体模型的跟踪方法易于实现视频的运动人体跟踪,而且利用较少的视频帧数即可学习获得人体模型。本文针对给出的视频提出了学习人体模型的学习算法。利用片图模型表示未经学习的人体,改进的隐马尔可夫模型( HMM)模拟人体在视频序列... 基于人体模型的跟踪方法易于实现视频的运动人体跟踪,而且利用较少的视频帧数即可学习获得人体模型。本文针对给出的视频提出了学习人体模型的学习算法。利用片图模型表示未经学习的人体,改进的隐马尔可夫模型( HMM)模拟人体在视频序列各帧间的运动,并使用机器学习方法对该改进的HMM进行推理,获取改进HMM的参数,从而获得所需的人体模型。学习得到的人体模型由包含颜色信息的各人体肢体模板组成。实验显示只用80~90帧包含有人体运动的序列图像,便可学习得到该运动人体的人体模型。结果表明,该学习框架效果明显,可用于快速学习视频序列中的运动人体模型,且可用于学习一人或多人的人体模型。 展开更多
关键词 机器学习 片图模型 改进的隐马氏模型
下载PDF
RS-and-GIS-Supported Forecast of Grassland Degradation in Southwest Songnen Plain by Markov Model
2
作者 LI Jianping ZHANG Bai GAO FengLI Jianping,Ph.D candidate, Northeast Institute of Geography and Agriculture Ecology,CAS,Changchun 130012 Postgraduate School of the Chinese Academy of Sciences,Beijing 100039,China. 《Geo-Spatial Information Science》 2005年第2期104-109,共6页
By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alka... By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alkalized land,cropland,water area and forestland is extracted by man-computer interactive interpretation method with ArcView and ArcInfo GIS software, and statistics data is acquired. On the basis of this the changing trend of land use types in the next ten years is forecasted and analyzed with Markov model. The results indicate that the problem of grassland degradation in the study area is quite serious. 展开更多
关键词 remote sensing geographic information system grassland degradation imageinterpretation markov model
下载PDF
Applied research on serum protein fingerprints for prediction of Qi deficiency syndrome and phlegm and blood stasis in patients with non-small cell lung cancer 被引量:1
3
作者 Zhizhen Liu Zongyang Yu +3 位作者 Xuenong OuYang Jian Du Xiaopeng Lan Meng Zhao 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2012年第3期350-354,共5页
OBJECTIVE:This study screened serum tumor biomarkers by surface enhanced laser desorption/ionization time-of-flight mass spectrometry(SELDI-TOF-MS) to establish a subset which could be used for the prediction of Qi de... OBJECTIVE:This study screened serum tumor biomarkers by surface enhanced laser desorption/ionization time-of-flight mass spectrometry(SELDI-TOF-MS) to establish a subset which could be used for the prediction of Qi deficiency syndrome and phlegm and blood stasis in patients with non-small cell lung cancer;and as diagnostic model of Chinese medicine.METHODS:Serum samples from 63 lung cancer patients with Qi deficiency syndrome and phlegm and blood stasis,and 28 lung cancer patients with non-Qi deficiency syndrome and phlegm and blood stasis were analyzed using SELDI-TOF-MS with a PBS II-C protein chip reader.Protein profiles were generated using immobilized metal affinity capture(IMAC3) protein chips.Differentially-expressed proteins were screened.Protein peak clustering and classification analyses were performed using Biomarker Wizard and Biomarker Pattern software packages,respectively.RESULTS:A total of 268 effective protein peaks were detected in the 1,000-10,000 Da molecular range for the 15 serum proteins screened(P<0.05).The decision tree model was M 2284.97,with a sensitivity of 96.2% and a specificity of 66.7%.CONCLUSION:SELDI-TOF-MS techniques,combined with a decision tree model,can help identify serum proteomic biomarkers related to Qi deficiency syndrome and phlegm and blood stasis in lung cancer patients;and the predictive model can be used to discriminate between Chinese medicine diagnostic models of disease. 展开更多
关键词 Lung neoplasms Deficiency symptomcomplex Intermingled phlegm and blood-stasis Spectrometry Mass Matrix-assisted laser desorption-Ionization PROTEOMICS Computational biology Protein array analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部