The loss mechanisms of different passive devices (on-chip inductors and capacitors) on different substrates are analyzed and compared. OPS (oxidized porous silicon) and HR (high-resistivity) substrates are used ...The loss mechanisms of different passive devices (on-chip inductors and capacitors) on different substrates are analyzed and compared. OPS (oxidized porous silicon) and HR (high-resistivity) substrates are used as low-loss substrates for on-chip planar LPF (low pass filter) fabrication. For the study of substrate loss, a planar coil inductor is also designed. Simulation results show that Q (the quality factor) of the inductor on both substrates is over 20. Measurements of the LPF on OPS substrate give a - 3dB bandwidth of 2.9GHz and a midband insertion loss of 0.87dB at 500MHz. The LPF on HR substrate gives a - 3dB bandwidth of 2.3GHz and a midband insertion loss of 0.42dB at 500MHz.展开更多
文摘The loss mechanisms of different passive devices (on-chip inductors and capacitors) on different substrates are analyzed and compared. OPS (oxidized porous silicon) and HR (high-resistivity) substrates are used as low-loss substrates for on-chip planar LPF (low pass filter) fabrication. For the study of substrate loss, a planar coil inductor is also designed. Simulation results show that Q (the quality factor) of the inductor on both substrates is over 20. Measurements of the LPF on OPS substrate give a - 3dB bandwidth of 2.9GHz and a midband insertion loss of 0.87dB at 500MHz. The LPF on HR substrate gives a - 3dB bandwidth of 2.3GHz and a midband insertion loss of 0.42dB at 500MHz.