The enumerating algorithm has been introduced into the fitting procedure of the ASR model. Based on the detailed study of 21 large earthquakes with M≥6. 8 in the Chinese Mainland,the statistical features of seismic s...The enumerating algorithm has been introduced into the fitting procedure of the ASR model. Based on the detailed study of 21 large earthquakes with M≥6. 8 in the Chinese Mainland,the statistical features of seismic strain release before large earthquakes have been summarized. In the mass,the strain release models can be divided into five types. The first is the DA model,in which the strain release accelerates in broader areas and decelerates in small areas around the epicenter. Approximately 38% of earthquake samples are of this type. The second is the AD model,in which the strain release decelerates in broader areas and accelerates in smaller areas around the epicenter with an occupying ratioof approximately 19%. The third is ASR,in which only accelerating strain release can be observed. Cases of this model amount to about 14%. The fourth is DSR,in which only decelerating strain release can be checked,amounting to about 24%. There is only one earthquake sample of the fifth type (LSR),which shows a linear strain release. There is a 3~6 years difference in the duration of pre-shock sequences between the accelerating and decelerating models. This means that seismic quiescence against a background of increased seismicity of small earthquakes before large earthquakes are a typical feature in general. For the DA model,the average size of critical regions for steady accelerating and decelerating strain release is about 260km to 400km and 100km to 200km,respectively,3 to 5 times and 1 to 2 times the rupture size of an earthquake of magnitude 7. 0. The AD model is the opposite of the DA model. The model parameter,m value,has good stability. The ratio of ASR is about the same for accelerating seismic strain release phenomena,no matter what the strain release models are,or how large the strain release quantity is. With regard to decelerating seismic strain release phenomena, the DA model has the most distinctive decelerating strain release characteristic and is the typical feature of seismic strain release,i. e. "decelerating in-accelerating out seismic strain model".展开更多
Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feas...Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.展开更多
基金supported by a grant from the National Key Technology R&D Program in the Eleventh"Five-year Plan"Period ( 20070403-2006BAC01B03-02-02)fund for earthquake research (200708020),China
文摘The enumerating algorithm has been introduced into the fitting procedure of the ASR model. Based on the detailed study of 21 large earthquakes with M≥6. 8 in the Chinese Mainland,the statistical features of seismic strain release before large earthquakes have been summarized. In the mass,the strain release models can be divided into five types. The first is the DA model,in which the strain release accelerates in broader areas and decelerates in small areas around the epicenter. Approximately 38% of earthquake samples are of this type. The second is the AD model,in which the strain release decelerates in broader areas and accelerates in smaller areas around the epicenter with an occupying ratioof approximately 19%. The third is ASR,in which only accelerating strain release can be observed. Cases of this model amount to about 14%. The fourth is DSR,in which only decelerating strain release can be checked,amounting to about 24%. There is only one earthquake sample of the fifth type (LSR),which shows a linear strain release. There is a 3~6 years difference in the duration of pre-shock sequences between the accelerating and decelerating models. This means that seismic quiescence against a background of increased seismicity of small earthquakes before large earthquakes are a typical feature in general. For the DA model,the average size of critical regions for steady accelerating and decelerating strain release is about 260km to 400km and 100km to 200km,respectively,3 to 5 times and 1 to 2 times the rupture size of an earthquake of magnitude 7. 0. The AD model is the opposite of the DA model. The model parameter,m value,has good stability. The ratio of ASR is about the same for accelerating seismic strain release phenomena,no matter what the strain release models are,or how large the strain release quantity is. With regard to decelerating seismic strain release phenomena, the DA model has the most distinctive decelerating strain release characteristic and is the typical feature of seismic strain release,i. e. "decelerating in-accelerating out seismic strain model".
基金supported by the "Applied Research and Multi-sectorial Program" (FIAM) (No. 5.2.1) granted by the Italian Cooperation and Development Agency (ICDA) to the Universidade Eduardo Mondlanethe Polytechnic University of Marche, Italy for the PhD scholarship provided to the first author as well as research funding for this work
文摘Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.