针对当前的研究方法在牙齿全景X光片上提取的信息较为单一,而未曾考虑将牙齿的类别信息与形状位置信息融合提取的问题,提出一种实例分割方法同时实现牙齿识别与分割。主要通过融合跳跃结构和SE(Squeeze and Excitation)模块对Mask R-CN...针对当前的研究方法在牙齿全景X光片上提取的信息较为单一,而未曾考虑将牙齿的类别信息与形状位置信息融合提取的问题,提出一种实例分割方法同时实现牙齿识别与分割。主要通过融合跳跃结构和SE(Squeeze and Excitation)模块对Mask R-CNN实例分割模型中的分割分支进行改进,并以牙齿功能与FDI牙位两种类别编码方式,采用400张牙齿全景X光片数据进行实验仿真。实验结果表明改进后的模型相比于其他模型,可以同时有效地进行牙齿分类和分割,实现牙齿类别、形状、位置信息的融合提取,改善了Mask R-CNN实例分割模型在分割分支中语义信息提取不足的问题。展开更多
文摘针对当前的研究方法在牙齿全景X光片上提取的信息较为单一,而未曾考虑将牙齿的类别信息与形状位置信息融合提取的问题,提出一种实例分割方法同时实现牙齿识别与分割。主要通过融合跳跃结构和SE(Squeeze and Excitation)模块对Mask R-CNN实例分割模型中的分割分支进行改进,并以牙齿功能与FDI牙位两种类别编码方式,采用400张牙齿全景X光片数据进行实验仿真。实验结果表明改进后的模型相比于其他模型,可以同时有效地进行牙齿分类和分割,实现牙齿类别、形状、位置信息的融合提取,改善了Mask R-CNN实例分割模型在分割分支中语义信息提取不足的问题。