The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the...The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.展开更多
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables...We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.展开更多
This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the ...This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number展开更多
Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic,...Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.展开更多
This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u...This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.展开更多
This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and Ti O2/water nano fluids in a cylindrical enclosure. Nusselt number(Nu) of nano fluids in relation to Rayleigh number(R...This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and Ti O2/water nano fluids in a cylindrical enclosure. Nusselt number(Nu) of nano fluids in relation to Rayleigh number(Ra) for different concentrations of nano fluids is investigated at different con figurations and orientations of the enclosure.Results show that adding nanoparticles to water has a negligible or even adverse in fluence upon natural convection heat transfer of water: only a slight increase in natural convection heat transfer of Al2O3/water is observed,while natural convection heat transfer for TiO2/water nano fluid is inferior to that for the base fluid. Results also reveal that at low Ra, the likelihood of enhancement in natural convection heat transfer is more than at high Ra: at low Ra, inclination angle, aspect ratio of the enclosure and nanoparticle concentration in fluence natural convection heat transfer more pronouncedly than that in high Ra.展开更多
The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and rel...The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and related analysis. The thermal radiation and Joule heating effects are also considered. An electrically conducting fluid in a channel with compliant boundaries is taken. Solution expressions are established through assumptions of large wavelength and low Reynolds number. Impact of Taylor and Hartman numbers on the axial velocity is similar in a qualitative sense. There is reverse effect of Taylor number on the secondary velocity when compared with the axial velocity. Temperature and heat transfer coefficients are increasing functions of Taylor number.展开更多
The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled...The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10^(-5) in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.展开更多
文摘The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
基金National Natural Science Foundation of China under Grant No.10671156the Program for New Century Excellent Talents in Universities under Grant No.NCET-04-0968
文摘We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.
文摘This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number
文摘Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.
文摘This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.
文摘This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and Ti O2/water nano fluids in a cylindrical enclosure. Nusselt number(Nu) of nano fluids in relation to Rayleigh number(Ra) for different concentrations of nano fluids is investigated at different con figurations and orientations of the enclosure.Results show that adding nanoparticles to water has a negligible or even adverse in fluence upon natural convection heat transfer of water: only a slight increase in natural convection heat transfer of Al2O3/water is observed,while natural convection heat transfer for TiO2/water nano fluid is inferior to that for the base fluid. Results also reveal that at low Ra, the likelihood of enhancement in natural convection heat transfer is more than at high Ra: at low Ra, inclination angle, aspect ratio of the enclosure and nanoparticle concentration in fluence natural convection heat transfer more pronouncedly than that in high Ra.
文摘The objective of this communication is to examine the effect of rotation on the peristaltic motion of non-Newtonian fluid. Constitutive relationship of Jeffrey fluid is employed in the mathematical formulation and related analysis. The thermal radiation and Joule heating effects are also considered. An electrically conducting fluid in a channel with compliant boundaries is taken. Solution expressions are established through assumptions of large wavelength and low Reynolds number. Impact of Taylor and Hartman numbers on the axial velocity is similar in a qualitative sense. There is reverse effect of Taylor number on the secondary velocity when compared with the axial velocity. Temperature and heat transfer coefficients are increasing functions of Taylor number.
文摘The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10^(-5) in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.