The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyani...The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyanidins, crosslikng characteristics, mechanical properties, in vitro enzymatic degradation resistance, the hydrophilicity and hemolysis tests were examined. The results showed that the fixation of biological tissue with glutaraldehyde (GA) or procyanidins increased its denaturation temperature, the surface hydrophilieity and mechanical properties as well as in vitro enzymatic degradation resistance. There were no significant differences in denaturation temperature, mechanical properties, the hydrophilicity and the in vitro enzymatic degradation between the glutaraldehyde and procyanidins fixed tissues. However, the ultimate tensile strength of the procyanidins fixed tissues was significantly superior to the glutaraldehyde fixed tissues. The hemolysis tests showed that hemolysis rate of the proeyanidins fixed tissues was lower than that of the glutaraldehyde fixed tissues. This study shows that procyanidins can crosslink which bovine pericardiaa effectively without toxicity. Our results suggest that this method might be a useful approach for the preparation of bioprosthetic heart valve.展开更多
基金National High Technology Research and Development Program (836 Program)grant number:2007AA02Z444+1 种基金National BasicResearch Program of Chinagrant number:2009CB930000
文摘The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyanidins, crosslikng characteristics, mechanical properties, in vitro enzymatic degradation resistance, the hydrophilicity and hemolysis tests were examined. The results showed that the fixation of biological tissue with glutaraldehyde (GA) or procyanidins increased its denaturation temperature, the surface hydrophilieity and mechanical properties as well as in vitro enzymatic degradation resistance. There were no significant differences in denaturation temperature, mechanical properties, the hydrophilicity and the in vitro enzymatic degradation between the glutaraldehyde and procyanidins fixed tissues. However, the ultimate tensile strength of the procyanidins fixed tissues was significantly superior to the glutaraldehyde fixed tissues. The hemolysis tests showed that hemolysis rate of the proeyanidins fixed tissues was lower than that of the glutaraldehyde fixed tissues. This study shows that procyanidins can crosslink which bovine pericardiaa effectively without toxicity. Our results suggest that this method might be a useful approach for the preparation of bioprosthetic heart valve.