-
题名改进DCL的花卉子类细粒度分类算法
- 1
-
-
作者
张立国
刘博
金梅
孙胜春
张勇
-
机构
燕山大学河北省测试计量技术与仪器重点实验室
燕山大学电气工程学院
-
出处
《计量学报》
CSCD
北大核心
2021年第12期1579-1585,共7页
-
基金
工信部工业互联网平台企业安全综合防护系统项目(TC190H3WR-2-1)
河北省中央引导地方专项(199477141G)。
-
文摘
针对现有的单一细粒度识别模型不能识别无训练样本花卉子类这一实际情况,结合DCL与KNN提出了一种将细粒度特征映射到高维空间自动分类的方法,实现无训练样本的子类分类。同时针对同一花卉子类特征较为相似且可能存在类间样本不均衡问题,改进了DCL模型的损失函数(focal loss),通过对比损失(contrastive loss)加大子类的类间距,用focal loss平衡类别损失。最后在308类样本不均衡的牡丹花上进行实验。实验结果表明:改进算法后有训练样本的子类准确率为0.932,F1值为0.925,较原始DCL算法有了较大的提升,对未训练样本的子类准确率为0.903,F1值为0.888。
-
关键词
计量学
细粒度图像识别
牡丹花分类
DCL改进算法
KNN算法
对比损失
损失函数
-
Keywords
metrology
fine-grained image recognition
peony classification
DCL improved algorithm
KNN
contrastive loss
focal loss
-
分类号
TB96
[机械工程—光学工程]
-