To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-far...To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.展开更多
Climate change affected the agricultural expansion and the formation of farming-grazing transitional patterns during historical periods. This study analyzed the possible range of the boundary shift of the potential su...Climate change affected the agricultural expansion and the formation of farming-grazing transitional patterns during historical periods. This study analyzed the possible range of the boundary shift of the potential suitable agriculture area in the farming-grazing transitional zone in the northeastern China during the 20th century. Based on modem weather data, 1 km-resolution land cover data, historical climatic time series, and estimation by using similar historical climatic scenes, the following was concluded: 1) The climate conditions of suitable agriculture areas in the farming-grazing transitional zone in the northeastern China between 1971 and 2000 required an average annual temperature above 1℃ or ≥ 0℃ accumulated temperature above 2500℃-2700℃, and annual precipitation above 350 mm. 2) The northern boundary of the potential suitable agriculture area during the relatively warmer period of 1890-1910 was approximately located at the position of the 1961-2000 area. The northern boundary shifted back to the south by 75 km on average during the colder period of the earlier 20th century, whereas during the modem warm period of the 1990s, the area shifted north by 100 km on average. 3) The western and eastern boundaries of the suitable agricul^re area during the heaviest drought periods between 1920s and 1930s had shifted northeast by 250 km and 125 km, respectively, contrasting to the boundaries of 1951-2008. For the wettest period, that is, the 1890s to the 1910s, the shift of western and eastern boundaries was to the southwest by 125 km and 200 km, respectively, compared with that in the 1951-2008 period. This study serves as a reference for identifying a climatically sensitive area and planning future land use and agricultural production in the study area.展开更多
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c...In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.展开更多
Land change science (LCS) strives to understand and model land-use change, which will further advance the understanding of multiple issues in the socio-ecological systems. Based on GIS/RS techniques, autologistic mo...Land change science (LCS) strives to understand and model land-use change, which will further advance the understanding of multiple issues in the socio-ecological systems. Based on GIS/RS techniques, autologistic model, and household survey method, this study investigated major land use changes and their causes from 1978 to 2008 in Uxin Banner (county-level), Inner Mongolia in China and then developed an understanding of the relationships between household livelihood and land-use pattern. Results showed that cultivated land increased from 1988 to 2000, and leveled offafter 2000. Built-up land increased stably for the period 1978 2008. The change of grassland and bare land differed among the three periods. From 1978 to 1988, grassland increased by 23.3%, and bare land decreased by 20.48%. From 1988 to 2000, bare land expanded by 1.7%, but grassland declined by 1.3%. From 2000 to 2008, an increase in grassland area by 1.8% was observed, but a decrease in bare land area by 9.0% was witnessed. The autologistic models performed better than logistic models as indicated by lower Akaike Information Criterion (AIC) values. Factors associated with human activities significantly correlated with the change of cultivated land, forest land, grassland, and built-up land. The produce prices and extensive cultivated land use are major issues in the farming area. This study suggests that completing land circulation systems and maintaining the stability of price are effective solutions. By contrast, reclamation and overgrazing are major concerns in the pastoral areas. Implementing environmental policies effectively, transferring population out of rural pastoral areas, and developing modem animal husbandry are effective ways to address these issues.展开更多
Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions ...Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions of agricultural-pasturalization,pr oviding a scientific basis for the ra tional distribution of marine culti vation.The three re-gions are as follows:1)The region of an agricultural-pastu ralization in the northern part of ma ritime space.It includes Da Wangjia and Shicheng islands.The ma in production is cultivation of praw n and molluscs in sea beach,float raft culture of mussel in shallow sea and scallop,and breeding of sea cucumber in subma rine.2)The region of agricultur-al-pasturalization in the middle we stern part of maritime space.It includes Da Changshan and Guanglu island s,and west-ern part of Xiao Chengshan Island.The main production is float raft cultu re of mussel and scallop in shallow se a,and breed-ing of sea cucumber in submarine.3)The region of agricultural-pastura lization of the southeastern part of maritime space.It includes the eastern part of Xiao ChangShan Island,Haiyang and Zhangzi islands.The main production is bre eding of abalone,sea cucumber,algaes and fish.展开更多
Ecological compensation or eco-compensation has been implemented mainly through institutional arrangement in China. In the farming-pastoral transitional zone of Inner Mongolia, eco-compensation has been implemented in...Ecological compensation or eco-compensation has been implemented mainly through institutional arrangement in China. In the farming-pastoral transitional zone of Inner Mongolia, eco-compensation has been implemented in two modes, one for land use abandonment and the other for productionstructure adjustment. Based on a detailed field survey, this study performs a comparative analysis of the willingness of households to accept economic compensation and consequently evaluates the effects of the two eco-compensation modes. The mode of eco-compensation for land use abandonment lacks a mechanism for generating employment opportunities and so is unsustainable. In contrast, ecocompensation for production-structure adjustment makes the pastoral and farming scales of households decrease significantly and most importantly helps to generate more job opportunities. Although this mode faces households with more market risk, it provides an effective means for resolving conflicts between ecosystems restoration and regional socio-economic development.展开更多
Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to in...Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to intensive land use. The crop-livestock integration, however, has been proven to increase food and feed productivity thorough niche complementarity, and is thereby especially effective for promoting ecosystem resilience. Regional synergy has emerged as an integrated approach to reconcile rangeland livestock with forage crop production. It moves beyond the specialized sectors of animal husbandry and intensive agriculture to coordinate them through regional coupling. Therefore, crop-livestock integration(CLI) has been suggested as one of the effective solutions to forage deficit and livestock production in grazing systems. But it is imperative that CLI moves forward from the farm level to the regional scale, in order to secure regional synergism during agro-pastoral development. The national key R & D program, Technology and Demonstration of Recovery and Restoration of Degraded Alpine Ecosystems on the Tibetan Plateau, aims to solve the problems of alpine grassland degradation by building up a grass-based animal husbandry technology system that includes synergizing forage production and ecological functioning, reconciling the relationship between ecology, forage production and animal husbandry, and achieving the win-win goals of curbing grassland degradation and changing the development mode of animal husbandry. It is imperative to call for regional synergy through integrating ecological functioning with ecosystem services, given the alarming threat of rangeland degradation on the Tibetan Plateau. The series of papers in this issue, together with those published previously, provide a collection of rangeland ecology and management studies in an effort to ensure the sustainable use and management of the alpine ecosystems.展开更多
文摘To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.
基金Under the auspices of China Global Change Research Program(No.2010CB950103)National Natural Science Foundation of China(No.40901099)
文摘Climate change affected the agricultural expansion and the formation of farming-grazing transitional patterns during historical periods. This study analyzed the possible range of the boundary shift of the potential suitable agriculture area in the farming-grazing transitional zone in the northeastern China during the 20th century. Based on modem weather data, 1 km-resolution land cover data, historical climatic time series, and estimation by using similar historical climatic scenes, the following was concluded: 1) The climate conditions of suitable agriculture areas in the farming-grazing transitional zone in the northeastern China between 1971 and 2000 required an average annual temperature above 1℃ or ≥ 0℃ accumulated temperature above 2500℃-2700℃, and annual precipitation above 350 mm. 2) The northern boundary of the potential suitable agriculture area during the relatively warmer period of 1890-1910 was approximately located at the position of the 1961-2000 area. The northern boundary shifted back to the south by 75 km on average during the colder period of the earlier 20th century, whereas during the modem warm period of the 1990s, the area shifted north by 100 km on average. 3) The western and eastern boundaries of the suitable agricul^re area during the heaviest drought periods between 1920s and 1930s had shifted northeast by 250 km and 125 km, respectively, contrasting to the boundaries of 1951-2008. For the wettest period, that is, the 1890s to the 1910s, the shift of western and eastern boundaries was to the southwest by 125 km and 200 km, respectively, compared with that in the 1951-2008 period. This study serves as a reference for identifying a climatically sensitive area and planning future land use and agricultural production in the study area.
基金supported by Key Program of National Natural Science Foundation of China(Grant No. 41130744)China National Natural Science Foundation (Grant No. 40971165)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau open Foundation(Grant No. 10501-1220)
文摘In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.
基金Under the auspices of National Natural Science Foundation of China(No.41371097,40871048)
文摘Land change science (LCS) strives to understand and model land-use change, which will further advance the understanding of multiple issues in the socio-ecological systems. Based on GIS/RS techniques, autologistic model, and household survey method, this study investigated major land use changes and their causes from 1978 to 2008 in Uxin Banner (county-level), Inner Mongolia in China and then developed an understanding of the relationships between household livelihood and land-use pattern. Results showed that cultivated land increased from 1988 to 2000, and leveled offafter 2000. Built-up land increased stably for the period 1978 2008. The change of grassland and bare land differed among the three periods. From 1978 to 1988, grassland increased by 23.3%, and bare land decreased by 20.48%. From 1988 to 2000, bare land expanded by 1.7%, but grassland declined by 1.3%. From 2000 to 2008, an increase in grassland area by 1.8% was observed, but a decrease in bare land area by 9.0% was witnessed. The autologistic models performed better than logistic models as indicated by lower Akaike Information Criterion (AIC) values. Factors associated with human activities significantly correlated with the change of cultivated land, forest land, grassland, and built-up land. The produce prices and extensive cultivated land use are major issues in the farming area. This study suggests that completing land circulation systems and maintaining the stability of price are effective solutions. By contrast, reclamation and overgrazing are major concerns in the pastoral areas. Implementing environmental policies effectively, transferring population out of rural pastoral areas, and developing modem animal husbandry are effective ways to address these issues.
文摘Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions of agricultural-pasturalization,pr oviding a scientific basis for the ra tional distribution of marine culti vation.The three re-gions are as follows:1)The region of an agricultural-pastu ralization in the northern part of ma ritime space.It includes Da Wangjia and Shicheng islands.The ma in production is cultivation of praw n and molluscs in sea beach,float raft culture of mussel in shallow sea and scallop,and breeding of sea cucumber in subma rine.2)The region of agricultur-al-pasturalization in the middle we stern part of maritime space.It includes Da Changshan and Guanglu island s,and west-ern part of Xiao Chengshan Island.The main production is float raft cultu re of mussel and scallop in shallow se a,and breed-ing of sea cucumber in submarine.3)The region of agricultural-pastura lization of the southeastern part of maritime space.It includes the eastern part of Xiao ChangShan Island,Haiyang and Zhangzi islands.The main production is bre eding of abalone,sea cucumber,algaes and fish.
基金National Natural Science Foundation of China (40788001)Key Research Project Supported by MOST (2006BAC08B06)
文摘Ecological compensation or eco-compensation has been implemented mainly through institutional arrangement in China. In the farming-pastoral transitional zone of Inner Mongolia, eco-compensation has been implemented in two modes, one for land use abandonment and the other for productionstructure adjustment. Based on a detailed field survey, this study performs a comparative analysis of the willingness of households to accept economic compensation and consequently evaluates the effects of the two eco-compensation modes. The mode of eco-compensation for land use abandonment lacks a mechanism for generating employment opportunities and so is unsustainable. In contrast, ecocompensation for production-structure adjustment makes the pastoral and farming scales of households decrease significantly and most importantly helps to generate more job opportunities. Although this mode faces households with more market risk, it provides an effective means for resolving conflicts between ecosystems restoration and regional socio-economic development.
基金The National Key Research and Development Program(2016YFC0502001)。
文摘Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to intensive land use. The crop-livestock integration, however, has been proven to increase food and feed productivity thorough niche complementarity, and is thereby especially effective for promoting ecosystem resilience. Regional synergy has emerged as an integrated approach to reconcile rangeland livestock with forage crop production. It moves beyond the specialized sectors of animal husbandry and intensive agriculture to coordinate them through regional coupling. Therefore, crop-livestock integration(CLI) has been suggested as one of the effective solutions to forage deficit and livestock production in grazing systems. But it is imperative that CLI moves forward from the farm level to the regional scale, in order to secure regional synergism during agro-pastoral development. The national key R & D program, Technology and Demonstration of Recovery and Restoration of Degraded Alpine Ecosystems on the Tibetan Plateau, aims to solve the problems of alpine grassland degradation by building up a grass-based animal husbandry technology system that includes synergizing forage production and ecological functioning, reconciling the relationship between ecology, forage production and animal husbandry, and achieving the win-win goals of curbing grassland degradation and changing the development mode of animal husbandry. It is imperative to call for regional synergy through integrating ecological functioning with ecosystem services, given the alarming threat of rangeland degradation on the Tibetan Plateau. The series of papers in this issue, together with those published previously, provide a collection of rangeland ecology and management studies in an effort to ensure the sustainable use and management of the alpine ecosystems.