利用自主研发的CIP-ZJU(Constrained Interpolation Profile Method in Zhejiang University)高精度数学模型研究强非线性自由表面流动问题.模型在直角坐标系统下建立,采用紧致插值曲线CIP方法作为流场的基本求解器,通过多相流的方式实...利用自主研发的CIP-ZJU(Constrained Interpolation Profile Method in Zhejiang University)高精度数学模型研究强非线性自由表面流动问题.模型在直角坐标系统下建立,采用紧致插值曲线CIP方法作为流场的基本求解器,通过多相流的方式实现固-液-气耦合同步求解,采用平衡格式的VOF(VOF/WLIC:Volume of Fluid/Weighted Line Interface Calculation)自由面捕捉方法改进了原模型,利用浸入边界方法处理运动物体.利用改进的CIP模型开展了不同类型的物体冲击液面引起的液滴飞溅现象的数值模拟,重点分析液滴飞溅过程中的自由液面变形、作用荷载和物体位置等.通过数值结果与实验结果的比较验证模型的可靠性.结果表明:平衡格式的VOF自由面捕捉方法能更精确地重构自由面,本文的数学模型可精确预测强非线性自由表面流动问题.展开更多
入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profi...入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profile)数学模型,分步求解Navier-Stokes(N-S)方程,并通过多相流理论描述固-液-气之间的相互作用,采用Volume of Fluid(VOF)类型的高精度紧致tangent of hyperbola for interface capturing(THINC)方法重构自由面。模拟了刚性圆柱和方柱的入水过程,结果与实验数据吻合较好。展开更多
Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible fo...Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species展开更多
文摘利用自主研发的CIP-ZJU(Constrained Interpolation Profile Method in Zhejiang University)高精度数学模型研究强非线性自由表面流动问题.模型在直角坐标系统下建立,采用紧致插值曲线CIP方法作为流场的基本求解器,通过多相流的方式实现固-液-气耦合同步求解,采用平衡格式的VOF(VOF/WLIC:Volume of Fluid/Weighted Line Interface Calculation)自由面捕捉方法改进了原模型,利用浸入边界方法处理运动物体.利用改进的CIP模型开展了不同类型的物体冲击液面引起的液滴飞溅现象的数值模拟,重点分析液滴飞溅过程中的自由液面变形、作用荷载和物体位置等.通过数值结果与实验结果的比较验证模型的可靠性.结果表明:平衡格式的VOF自由面捕捉方法能更精确地重构自由面,本文的数学模型可精确预测强非线性自由表面流动问题.
文摘入水问题涉及到军事、航空等领域,如子弹入水、船舶砰击等,具有很强的应用背景。物体入水的过程涉及到固、液、气三相流动和相互作用,并伴随水花飞溅、空泡形成等复杂的物理现象。该文基于紧致插值CIP(constrained interpolation profile)数学模型,分步求解Navier-Stokes(N-S)方程,并通过多相流理论描述固-液-气之间的相互作用,采用Volume of Fluid(VOF)类型的高精度紧致tangent of hyperbola for interface capturing(THINC)方法重构自由面。模拟了刚性圆柱和方柱的入水过程,结果与实验数据吻合较好。
文摘Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species