AIM: To study the protective effect of eukaryotic expression plasmid encoding augmenter of liver regeneration (ALR) on acute hepatic injury and hepatic failure in rats. METHODS: The PCR-amplified ALR gene was recombin...AIM: To study the protective effect of eukaryotic expression plasmid encoding augmenter of liver regeneration (ALR) on acute hepatic injury and hepatic failure in rats. METHODS: The PCR-amplified ALR gene was recombined with pcDNA3 plasmid, and used to treat rats with acute hepatic injury. The rats with acute hepatic injury induced by intraperitoneal injection of 2 mL/kg 50% carbon tetrachloride (CCl4) were randomly divided into saline control group and recombinant pcDNA3-ALR plasmid treatment groups. Recombinant pcDNA3-ALR plasmid DNA (50 or 200 μg/kg) was injected into the rats with acute hepatic injury intravenously, intraperitoneally, or intravenously and intraperitoneally in combination 4 h after CCl4 administration, respectively. The recombinant plasmid was injected once per 12 h into all treatment groups four times, and the rats were decapitated 12 h after the last injection. Hepatic histopathological alterations were observed after HE staining, the expression of proliferating cell nuclear antigen (PCNA) in liver tissue was detected by immunohistochemical staining, and the level of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was determined by biochemical method. The recombinant plasmid DNA (200 μg/kg) and saline were intraperitoneally injected into the rats with acute hepatic failure induced by intraperitoneal injection of 4 mL/kg 50% CCl4 after 4 h of CCl4 administration, respectively. Rats living over 96 h were considered as survivals.RESULTS: The sequence of ALR cDNA of recombinant pcDNA3-ALR plasmid was accordant with the reported sequence of rat ALR cDNA. After the rats with acute hepatic injury were treated with recombinant pcDNA3-ALR plasmid, the degree of liver histopathological injury markedly decreased. The pathologic liver tissues, in which hepatic degeneration and necrosis of a small amount of hepatocytes and a large amount of infiltrating inflammatory cells were observed, and they became basically normal in the most effective group after four times of injection of recombinant pcDNA3-ALR plasmid. The indexes of PCNA significantly increased in the recombinant pcDNA3-ALR plasmid treatment groups compared to model group. The level of serum AST and ALT remarkably reduced in recombinant pcDNA3-ALR plasmid treatment groups compared to model group. The results showed that the effect of 200 μg/kg recombinant pcDNA3-ALR plasmid in the rats with acute liver injury was stronger than that of 50μg/kg pcDNA3-ALR DNA.The effect of intravenous injection of recombinant pcDNA3ALR plasmid was better. After the rats with acute hepatic failure were treated with recombinant pcDNA3-ALR plasmid,the survival rate (40%) significantly increased in treatment groups compared to control group (15%, P<0.01).CONCLUSION: The ALR gene may play an important role in relieving acute hepatic injury and hepatic failure by promoting hepatic cell proliferation and reducing level ofAST and ALT in CCl4-intoxicated rats.展开更多
It is clear that RNA is more than just a messenger between gene and protein.The mammalian genome is pervasively transcribed,giving rise to tens of thousands of non-coding transcripts.Whether all of these transcripts a...It is clear that RNA is more than just a messenger between gene and protein.The mammalian genome is pervasively transcribed,giving rise to tens of thousands of non-coding transcripts.Whether all of these transcripts are functional remains to be elucidated,but it is evident that there are many functional long non-coding RNAs(lncRNAs).Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs.Here we organize these studies to highlight the significant involvements of lncRNAs in regulation of gene expression and human physiological and pathological processes,which are achieved by their interaction with DNA,RNA or protein.展开更多
Exosomes and long non-coding RNAs(lncRNAs)are emerging as important elements contributing to a more comprehensive understanding of cancer development and progression.The discovery of lncRNAs in exosomes further indica...Exosomes and long non-coding RNAs(lncRNAs)are emerging as important elements contributing to a more comprehensive understanding of cancer development and progression.The discovery of lncRNAs in exosomes further indicates their bona fide biological functional roles in cancer development and drug resistance.In this review,we describe the biogenesis of exosomes and summarize the function of exosomal lncRNAs in the field of cancer research.These findings strikingly advance current knowledge of exosomal lncRNAs and suggest that they may be promising diagnostic biomarkers and therapeutic targets for cancer.展开更多
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic...New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocu- mented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicolis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula trans- ition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.展开更多
基金Supported by the Natural Science Foundation of Hebei Province, No. 302489
文摘AIM: To study the protective effect of eukaryotic expression plasmid encoding augmenter of liver regeneration (ALR) on acute hepatic injury and hepatic failure in rats. METHODS: The PCR-amplified ALR gene was recombined with pcDNA3 plasmid, and used to treat rats with acute hepatic injury. The rats with acute hepatic injury induced by intraperitoneal injection of 2 mL/kg 50% carbon tetrachloride (CCl4) were randomly divided into saline control group and recombinant pcDNA3-ALR plasmid treatment groups. Recombinant pcDNA3-ALR plasmid DNA (50 or 200 μg/kg) was injected into the rats with acute hepatic injury intravenously, intraperitoneally, or intravenously and intraperitoneally in combination 4 h after CCl4 administration, respectively. The recombinant plasmid was injected once per 12 h into all treatment groups four times, and the rats were decapitated 12 h after the last injection. Hepatic histopathological alterations were observed after HE staining, the expression of proliferating cell nuclear antigen (PCNA) in liver tissue was detected by immunohistochemical staining, and the level of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was determined by biochemical method. The recombinant plasmid DNA (200 μg/kg) and saline were intraperitoneally injected into the rats with acute hepatic failure induced by intraperitoneal injection of 4 mL/kg 50% CCl4 after 4 h of CCl4 administration, respectively. Rats living over 96 h were considered as survivals.RESULTS: The sequence of ALR cDNA of recombinant pcDNA3-ALR plasmid was accordant with the reported sequence of rat ALR cDNA. After the rats with acute hepatic injury were treated with recombinant pcDNA3-ALR plasmid, the degree of liver histopathological injury markedly decreased. The pathologic liver tissues, in which hepatic degeneration and necrosis of a small amount of hepatocytes and a large amount of infiltrating inflammatory cells were observed, and they became basically normal in the most effective group after four times of injection of recombinant pcDNA3-ALR plasmid. The indexes of PCNA significantly increased in the recombinant pcDNA3-ALR plasmid treatment groups compared to model group. The level of serum AST and ALT remarkably reduced in recombinant pcDNA3-ALR plasmid treatment groups compared to model group. The results showed that the effect of 200 μg/kg recombinant pcDNA3-ALR plasmid in the rats with acute liver injury was stronger than that of 50μg/kg pcDNA3-ALR DNA.The effect of intravenous injection of recombinant pcDNA3ALR plasmid was better. After the rats with acute hepatic failure were treated with recombinant pcDNA3-ALR plasmid,the survival rate (40%) significantly increased in treatment groups compared to control group (15%, P<0.01).CONCLUSION: The ALR gene may play an important role in relieving acute hepatic injury and hepatic failure by promoting hepatic cell proliferation and reducing level ofAST and ALT in CCl4-intoxicated rats.
基金supported by grants from the National Basic Research Program of China(2011CB504203)National Natural Science Foundation of China(31000579,31371325)+1 种基金Innovative Research Team Program of Sichuan Province(2011JTD0026)the Program for New Century Excellent Talents in the University of Ministry of Education of China(NCET-10-0599)
文摘It is clear that RNA is more than just a messenger between gene and protein.The mammalian genome is pervasively transcribed,giving rise to tens of thousands of non-coding transcripts.Whether all of these transcripts are functional remains to be elucidated,but it is evident that there are many functional long non-coding RNAs(lncRNAs).Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs.Here we organize these studies to highlight the significant involvements of lncRNAs in regulation of gene expression and human physiological and pathological processes,which are achieved by their interaction with DNA,RNA or protein.
基金supported by the National Natural Science Foundation of China(Nos.81672791 and 81872300)the Foundation of the Department of Education of Zhejiang Province,China(No.Y201224954)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY14H040007)the Zhejiang Provincial Natural Science Fund for Distinguished Young Scholars of China(No.LR18C060002)
文摘Exosomes and long non-coding RNAs(lncRNAs)are emerging as important elements contributing to a more comprehensive understanding of cancer development and progression.The discovery of lncRNAs in exosomes further indicates their bona fide biological functional roles in cancer development and drug resistance.In this review,we describe the biogenesis of exosomes and summarize the function of exosomal lncRNAs in the field of cancer research.These findings strikingly advance current knowledge of exosomal lncRNAs and suggest that they may be promising diagnostic biomarkers and therapeutic targets for cancer.
基金This work was supported by the National Natural Science Foundation of China (31671325 and 31271339). N.O.O. thanks the CAS-TWAS President's Fellowship Program for Doctoral Candidates for support.
文摘New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocu- mented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicolis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula trans- ition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.