Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thic...Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.展开更多
The decomposition of plant materials in soil, along with the factors affecting it, has been frequently studied, and much information has been accumulated. Most reports indicated that the decomposition of organic mater...The decomposition of plant materials in soil, along with the factors affecting it, has been frequently studied, and much information has been accumulated. Most reports indicated that the decomposition of organic materials proceeded more slowly in paddy soil than in upland soil because of the insufficient 02 supply, the lower soil temperature and the weaker activity of aquatic invertebrates in the former as compared with those in展开更多
Over 30% rural families in India live in poverty due to small holdings and low soil productivity. As many underutilised tree species are tolerant to harsh agro-climatic conditions, BAIF promoted agri-horti-forestry on...Over 30% rural families in India live in poverty due to small holdings and low soil productivity. As many underutilised tree species are tolerant to harsh agro-climatic conditions, BAIF promoted agri-horti-forestry on degraded lands inhabited by tribals. Traditionally dependent on non-timber forest products, they selected tamarind (Tamarindus indica), jackfruit (Artocarpus heterophyllus), Indian gooseberry (Emblica officinalis) and ber (Zizyphus mauritiana), apart from mango and cashew for their livelihood. Oilseed trees like neem (Azadirachta indica), mahua (Madhuca indica) and jatropha (Jatropha curcas) were introduced on field borders, while the interspace was utilised for cultivating food crops. To ensure higher yield and superior quality of the produce, selection of elite germplasm, domestication through standardisation of cultivation practices and facilitation for supply of planting material are essential, apart from increasing the demand by exploring their uses, creating awareness among consumers and establishing a good distribution network, Intercrops like foodgrains, vegetables and medicinal herbs generated additional income and reduced risk in case of failure of underutilised crops. Introduction of underutilised crops on a small scale with local crops and expansion of their cultivation with the demand is recommended.展开更多
Phytolith study is a new branch of micropaleontology with an increasingly important role in geology, archaeology, and plant taxonomy. Phytoliths have several advantages considering their characteristics of small parti...Phytolith study is a new branch of micropaleontology with an increasingly important role in geology, archaeology, and plant taxonomy. Phytoliths have several advantages considering their characteristics of small particle size, high production, wide distribution, anti-decomposition, in situ deposition, distinctive morphologies, and element sequestrating capacity. Phytolith assemblages in modem soil have been found to be closely related to modem vegetation types and climate conditions, which forms the basis for the quantitative study of paleoecology, paleoclimate, and bio-geochemical cycles. At present, phytolith studies generally focus on the following four aspects: (1) Morphology: about 260 unduplicated types of phytoliths have been identified in modem soil, of which 110 types are from grasses, 50 types from ferns, woody plants and other angiosperms, whereas the origin plants of the remaining 100 types are still under investigation. (2) Soil phytolith assemblages and vegetation: phytolith assemblages from the topsoil have been used to distinguish surface vegetation types including different forests and grasslands over a typical region. This model has been applied to restore past vegetation conditions and monitor the dynamic evolution of specific vegetation types at different temporal and spatial scales. (3) Soil phytolith assemblages and climate: quantitative and semi-quantitative relationships between phytolith assemblages and a series of climate parameters, such as annual mean temperature, annual mean precipitation and altitude, have been established through mathematical analysis. In this manner, quantitative reconstruction of paleoclimatic parameters has been achieved through the phytolith-climate transfer function model. (4) Soil phytolith and its sequestered elements: in this topic, the content of soil PhytOC (Phytolith-occluded Organic Carbon) and the importance of PhytOC in the bio-geochemical cycle have been the focus. The study of modem soil phytoliths has provided new approaches and many successful cases for solving specific problems in various fields, such as Earth science and archaeology. This study analyzed existing issues in addition to the abovementioned significant progresses, and provides directions for future research on modem soil phytoliths.展开更多
There is an increasing interest in understanding ambient bioaerosols due to their roles both in health and in climate. Here, we deployed an Ultraviolet Aerodynamic Particle Sizer to monitor viable (fluorescent) bioa...There is an increasing interest in understanding ambient bioaerosols due to their roles both in health and in climate. Here, we deployed an Ultraviolet Aerodynamic Particle Sizer to monitor viable (fluorescent) bioaerosol concentration levels at city centers (highly polluted) and their corresponding suburbs (near pristine) (total 40 locations) in 11 provinces featuring different climate zones in China between July 16 and 28, 2013. The concentration levels of viable bioaerosol particles (BioPM) of 〉0.5 μm were measured, and corresponding percentages of BioPM% (biological fraction of total PM) and BioPM2.5% (biological fraction of PM2.5) in particulate matter (PM) and BioPM, respectively, were determined. For some key cities, indoor viable bioaerosol levels were also obtained. In addition, bacterial structures of the air samples collected across these monitoring locations were studied using pyrosequencing. BioPM concentration levels ranged from 2.1 ×10^4 to 2.4 × 10^5/m3 for city centers [BioPM% = 6.4 % (4-6.3 %)] and 0.5 × 10^4 to 4.7 × 10^5/m3 for suburbs [BioPM% = 10 % (4-8.7 %)]. Distinctive bioaerosol size distribution patterns were observed for different climate zones, e.g., some had fluorescence peaks at 3 μm, while the majority had peaks at 1 μm. Ambient bacterial aerosol community structures were also found different for different geophysical locations. Results suggest that there was a poor overall relationship between PM and BioPM across 40 monitoring locations (R2= 0.081, two-tailed P value = 0.07435). Generally, city centers had higher PM concentrations than suburbs, but not BioPM and BioPM%. Indoor bioaerosol levels were found at least tenfold higher than those corresponding outdoors. Bacillus was observed to dominate the bacterial aerosol community in the air sample.展开更多
Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Plioce...Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene (the last -4.3 Ma). The re- sults show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Is- lands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals from the Alaskan region distinctly increased, and smectite/(illite+chlorite) ratios declined. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Ma, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Ma. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condi- tion since 2.74 Ma, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Ma was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition (1.07 to 0.8 Ma), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at -0.42 Ma (MIS 11), -0.33 Ma (MIS 9) and ~0.12 Ma (MIS 5), respectively. During the last 9.21 ka (the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.展开更多
文摘Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.
文摘The decomposition of plant materials in soil, along with the factors affecting it, has been frequently studied, and much information has been accumulated. Most reports indicated that the decomposition of organic materials proceeded more slowly in paddy soil than in upland soil because of the insufficient 02 supply, the lower soil temperature and the weaker activity of aquatic invertebrates in the former as compared with those in
文摘Over 30% rural families in India live in poverty due to small holdings and low soil productivity. As many underutilised tree species are tolerant to harsh agro-climatic conditions, BAIF promoted agri-horti-forestry on degraded lands inhabited by tribals. Traditionally dependent on non-timber forest products, they selected tamarind (Tamarindus indica), jackfruit (Artocarpus heterophyllus), Indian gooseberry (Emblica officinalis) and ber (Zizyphus mauritiana), apart from mango and cashew for their livelihood. Oilseed trees like neem (Azadirachta indica), mahua (Madhuca indica) and jatropha (Jatropha curcas) were introduced on field borders, while the interspace was utilised for cultivating food crops. To ensure higher yield and superior quality of the produce, selection of elite germplasm, domestication through standardisation of cultivation practices and facilitation for supply of planting material are essential, apart from increasing the demand by exploring their uses, creating awareness among consumers and establishing a good distribution network, Intercrops like foodgrains, vegetables and medicinal herbs generated additional income and reduced risk in case of failure of underutilised crops. Introduction of underutilised crops on a small scale with local crops and expansion of their cultivation with the demand is recommended.
基金supported by the “Macroevolutionary Processes and Paleoenvironments of Major Historical Biota” of the Chinese Academy of Sciences (Grant No. XDPB0503)the National Natural Science Foundation of China (Grant Nos. 41430103 & 41230104)the National Basic Research Program of China (Grant No. 2015CB953801)
文摘Phytolith study is a new branch of micropaleontology with an increasingly important role in geology, archaeology, and plant taxonomy. Phytoliths have several advantages considering their characteristics of small particle size, high production, wide distribution, anti-decomposition, in situ deposition, distinctive morphologies, and element sequestrating capacity. Phytolith assemblages in modem soil have been found to be closely related to modem vegetation types and climate conditions, which forms the basis for the quantitative study of paleoecology, paleoclimate, and bio-geochemical cycles. At present, phytolith studies generally focus on the following four aspects: (1) Morphology: about 260 unduplicated types of phytoliths have been identified in modem soil, of which 110 types are from grasses, 50 types from ferns, woody plants and other angiosperms, whereas the origin plants of the remaining 100 types are still under investigation. (2) Soil phytolith assemblages and vegetation: phytolith assemblages from the topsoil have been used to distinguish surface vegetation types including different forests and grasslands over a typical region. This model has been applied to restore past vegetation conditions and monitor the dynamic evolution of specific vegetation types at different temporal and spatial scales. (3) Soil phytolith assemblages and climate: quantitative and semi-quantitative relationships between phytolith assemblages and a series of climate parameters, such as annual mean temperature, annual mean precipitation and altitude, have been established through mathematical analysis. In this manner, quantitative reconstruction of paleoclimatic parameters has been achieved through the phytolith-climate transfer function model. (4) Soil phytolith and its sequestered elements: in this topic, the content of soil PhytOC (Phytolith-occluded Organic Carbon) and the importance of PhytOC in the bio-geochemical cycle have been the focus. The study of modem soil phytoliths has provided new approaches and many successful cases for solving specific problems in various fields, such as Earth science and archaeology. This study analyzed existing issues in addition to the abovementioned significant progresses, and provides directions for future research on modem soil phytoliths.
基金supported by the National Natural Science Foundation of China(21277007,21477003,and 41121004)the Ministry of Science and Technology of China(2015DFG92040,2015CB553401)Ministry of Education(20130001110044)
文摘There is an increasing interest in understanding ambient bioaerosols due to their roles both in health and in climate. Here, we deployed an Ultraviolet Aerodynamic Particle Sizer to monitor viable (fluorescent) bioaerosol concentration levels at city centers (highly polluted) and their corresponding suburbs (near pristine) (total 40 locations) in 11 provinces featuring different climate zones in China between July 16 and 28, 2013. The concentration levels of viable bioaerosol particles (BioPM) of 〉0.5 μm were measured, and corresponding percentages of BioPM% (biological fraction of total PM) and BioPM2.5% (biological fraction of PM2.5) in particulate matter (PM) and BioPM, respectively, were determined. For some key cities, indoor viable bioaerosol levels were also obtained. In addition, bacterial structures of the air samples collected across these monitoring locations were studied using pyrosequencing. BioPM concentration levels ranged from 2.1 ×10^4 to 2.4 × 10^5/m3 for city centers [BioPM% = 6.4 % (4-6.3 %)] and 0.5 × 10^4 to 4.7 × 10^5/m3 for suburbs [BioPM% = 10 % (4-8.7 %)]. Distinctive bioaerosol size distribution patterns were observed for different climate zones, e.g., some had fluorescence peaks at 3 μm, while the majority had peaks at 1 μm. Ambient bacterial aerosol community structures were also found different for different geophysical locations. Results suggest that there was a poor overall relationship between PM and BioPM across 40 monitoring locations (R2= 0.081, two-tailed P value = 0.07435). Generally, city centers had higher PM concentrations than suburbs, but not BioPM and BioPM%. Indoor bioaerosol levels were found at least tenfold higher than those corresponding outdoors. Bacillus was observed to dominate the bacterial aerosol community in the air sample.
基金supported by National Natural Science Foundation of China(Grant Nos.41476037,41076026,41276051 and 91228207)the National Key Basic Research Program of China(Grant No.2013CB956102)IODP-China
文摘Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene (the last -4.3 Ma). The re- sults show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Is- lands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals from the Alaskan region distinctly increased, and smectite/(illite+chlorite) ratios declined. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Ma, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Ma. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condi- tion since 2.74 Ma, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Ma was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition (1.07 to 0.8 Ma), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at -0.42 Ma (MIS 11), -0.33 Ma (MIS 9) and ~0.12 Ma (MIS 5), respectively. During the last 9.21 ka (the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.