The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous ...Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.展开更多
Gas hydrate is a kind of icy crystal body formed by water and natural gas in special conditions. The discovery of gas hydrates provides a wide sphere and a new way of thinking for finding clean and effective energy re...Gas hydrate is a kind of icy crystal body formed by water and natural gas in special conditions. The discovery of gas hydrates provides a wide sphere and a new way of thinking for finding clean and effective energy resources to replace increasingly exhausted traditional energy resources. Moreover, in our country there are a wide realm and bright prospect in the exploration of gas hydrate. This paper has summarized the progress on the study of gas hydrate. And based on the former research about gas hydrates, the integrative identification signs of gas hydrates were summarized in the aspects of seismic data, geophysical well logging, sedimentary and rock, geochemistry, topography and morphology. In the end, the author hopes it may provide some useful clues to the exploration of gas hydrate.展开更多
Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the...Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.展开更多
In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp cat...In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.展开更多
The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET tech...The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.展开更多
The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France,...The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.展开更多
The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocit...The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method's deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly's equation.展开更多
The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using differen...The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.展开更多
In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large...In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large amount of experiments. By reducing the group interval, the low frequency signal are enhanced instead of been attenuated. Fur-thermore, to solve the problem that the precision of Rayleigh wave exploration method count much to the signal-to-noise ratio, some preprocessing methods were put forward. By using zero shift rectifying, digital F-K filtering and cutting, noises can be effectively eliminated.展开更多
The large deep-sea area from the southwestern Qiongdongnan Basin to the eastern Dongsha Islands,within the continental margin of northern South China Sea,is a frontier of natural gas hydrate exploration in China.Multi...The large deep-sea area from the southwestern Qiongdongnan Basin to the eastern Dongsha Islands,within the continental margin of northern South China Sea,is a frontier of natural gas hydrate exploration in China.Multiform of deep-sea sedimentations have been occurred since late Miocene,and sediment waves as a potential quality reservoir of natural gas hydrate is an most important style of them.Based on abundant available data of seismic,gravity sampling and drilling core,we analyzed the characteristics of seismic reflection and sedimentation of sediment waves and the occurrence of natural gas hydrate hosted in it,and discussed the control factors on natural gas hydrate accumulation.The former findings revealed the deep sea of the northern South China Sea have superior geological conditions on natural gas hydrate accumulation.Therefore,it will be of great significance in deep-sea natural gas hydrate exploration with the study on the relationship between deep-sea sedimentation and natural gas hydrate accumulation.展开更多
Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in suc...Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in such mature environment, the key strategies which should be adopted include the innovation of the exploration models, application of the advanced exploration techniques and integration of multiple sets of information. The innovation of the exploration models should incorporate the new metallogenic concepts that are based on the geodynamic anatomization. The advanced techniques applied in the mature exploration environment should aim at the speciality and complexity of the geological setting and working environments. The information synthesis is to integrate multiple sets of data for giving a more credible and visual prospectivity map by using the geographic imformation system(GIS) and several mathematical methods, such as weight of evidence and fuzzy logic, which can extract useful information from every set of data as much as possible. Guided by these strategies, a predictive exploration in Fenghuangshan ore field of Tongling copper district was implemented, and a hidden ore deposit was discovered.展开更多
Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in the...Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in these complex conditions, has established a suite of technologies for high-fidelity processing and fine interpretation of seismic data. This article introduces the processes involved in the data processing and interpretation and illustrates the results.展开更多
All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such dis...All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The proce- dure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of imped- ance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected.展开更多
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by National Natural Science Foundation of China (Grant No. 40674072)National Hi-techResearch and Development Program of China (863 Program) (Grant No. 2006AA09A102-08)+1 种基金National Basic ResearchProgram of China (the 973 Program. Grant No. 007CB209603) the Opening fund of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (GPMR200633)
文摘Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.
文摘Gas hydrate is a kind of icy crystal body formed by water and natural gas in special conditions. The discovery of gas hydrates provides a wide sphere and a new way of thinking for finding clean and effective energy resources to replace increasingly exhausted traditional energy resources. Moreover, in our country there are a wide realm and bright prospect in the exploration of gas hydrate. This paper has summarized the progress on the study of gas hydrate. And based on the former research about gas hydrates, the integrative identification signs of gas hydrates were summarized in the aspects of seismic data, geophysical well logging, sedimentary and rock, geochemistry, topography and morphology. In the end, the author hopes it may provide some useful clues to the exploration of gas hydrate.
文摘Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.
文摘In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.
文摘The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.
文摘The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.
文摘The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method's deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly's equation.
文摘The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.
文摘In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large amount of experiments. By reducing the group interval, the low frequency signal are enhanced instead of been attenuated. Fur-thermore, to solve the problem that the precision of Rayleigh wave exploration method count much to the signal-to-noise ratio, some preprocessing methods were put forward. By using zero shift rectifying, digital F-K filtering and cutting, noises can be effectively eliminated.
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2009CB219508,2009CB219502)the National High Technology Research and Development Program of China(863 Program) (No.2006AA09A202)
文摘The large deep-sea area from the southwestern Qiongdongnan Basin to the eastern Dongsha Islands,within the continental margin of northern South China Sea,is a frontier of natural gas hydrate exploration in China.Multiform of deep-sea sedimentations have been occurred since late Miocene,and sediment waves as a potential quality reservoir of natural gas hydrate is an most important style of them.Based on abundant available data of seismic,gravity sampling and drilling core,we analyzed the characteristics of seismic reflection and sedimentation of sediment waves and the occurrence of natural gas hydrate hosted in it,and discussed the control factors on natural gas hydrate accumulation.The former findings revealed the deep sea of the northern South China Sea have superior geological conditions on natural gas hydrate accumulation.Therefore,it will be of great significance in deep-sea natural gas hydrate exploration with the study on the relationship between deep-sea sedimentation and natural gas hydrate accumulation.
基金Project(2001CB409809) supported by the National Key Foundmental Research and Development Program of Chinaproject(1042610) supported by the Key Program of the Education Ministry of China
文摘Prediction has become more and more difficult in mineral exploration, especially in the mature exploration environment such as Tongling copper district. For enhancing predictive discovery of hidden ore deposits in such mature environment, the key strategies which should be adopted include the innovation of the exploration models, application of the advanced exploration techniques and integration of multiple sets of information. The innovation of the exploration models should incorporate the new metallogenic concepts that are based on the geodynamic anatomization. The advanced techniques applied in the mature exploration environment should aim at the speciality and complexity of the geological setting and working environments. The information synthesis is to integrate multiple sets of data for giving a more credible and visual prospectivity map by using the geographic imformation system(GIS) and several mathematical methods, such as weight of evidence and fuzzy logic, which can extract useful information from every set of data as much as possible. Guided by these strategies, a predictive exploration in Fenghuangshan ore field of Tongling copper district was implemented, and a hidden ore deposit was discovered.
文摘Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in these complex conditions, has established a suite of technologies for high-fidelity processing and fine interpretation of seismic data. This article introduces the processes involved in the data processing and interpretation and illustrates the results.
基金Project 40574057 supported by the National Natural Science Foundation of China and CUMT Youth Foundation
文摘All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The proce- dure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of imped- ance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected.