Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the el...First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.展开更多
目的:分析三氧化物聚合体和氢氧化钙两种药物在年轻恒牙活髓切断术中的特性、机制并比较临床疗效。方法:选取在我院口腔科确诊需行活髓切断术的年轻恒牙50颗作为观察对象,随机均分为观察组和对照组。行活髓切断术时,观察组采用三氧化物...目的:分析三氧化物聚合体和氢氧化钙两种药物在年轻恒牙活髓切断术中的特性、机制并比较临床疗效。方法:选取在我院口腔科确诊需行活髓切断术的年轻恒牙50颗作为观察对象,随机均分为观察组和对照组。行活髓切断术时,观察组采用三氧化物聚合体,对照组采用氢氧化钙作为盖髓药物,术后随诊1年,根据临床效果和X线片结果评价其疗效。结果:观察组术后3、6、12个月治疗成功率均高于对照组,差异有统计学意义( P <0.05)。结论:与氢氧化钙相比,三氧化物聚合体在活髓切断术作为盖髓药物,具有炎性低、密闭性高、成牙本质细胞层多、修复性牙本质层厚等优点,值得推广。展开更多
In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(A...According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.展开更多
Low-temperature soluble carbohydrate accumulations are commonly associated with anthocyanin coloration, attenuated growth and cold adaptation of cool-season grasses. The vrn-1 gene has potent effects on vernalization ...Low-temperature soluble carbohydrate accumulations are commonly associated with anthocyanin coloration, attenuated growth and cold adaptation of cool-season grasses. The vrn-1 gene has potent effects on vernalization requirement, growth, and soluble carbohydrate accumulations of the winter-annual Triticeae species. Two hundred and four unmapped AFLP markers and genome-specific DNA markers genetically linked to the vrn-1 gene were used to detect QTL controlling soluble carbohydrate accumulations, anthocyanin coloration and growth characteristics in a segregating population derived from open pollinated Leymus cinereus x L. triticoides hybrids. These perennial Triticeae grasses are distinguished by adaptation and growth habit. As expected, positive trait correlations and pleiotropic gene effects were detected for soluble carbohydrate accumulations and anthocyanin coloration. Likewise, positive trait correlations and pleiotropic gene effects were detected for tillering, leaf development, leaf growth, regrowth and rhizome spread. However, soluble carbohydrate accumulations were not associated with attenuated growth. In fact, several DNA marker alleles, including one near vrn-Ns1, had positive effects on soluble leaf carbohydrate concentrations and low temperature growth. The corresponding DNA marker near vrn-Ns1 had more specific effects on tillering. We speculate that vrn-1 exerts quantitative effects on low-temperature soluble leaf carbohydrate accumulations and growth habit of the perennial Leymus. However, a number of other DNA markers displayed highly significant effects on soluble carbohydrate accumulations and various growth characteristics. Findings indicate that anthocyanin coloration may be a useful phenotypic marker for soluble carbohydrate accumulation. Although variation for soluble carbohydrates was not associated with attenuated growth in this population, this trait was under genetic control.展开更多
A newly designed TiAl alloy containing W,Nb,and B was produced through magnetic-flotation-melting method.Mass production of this TiAl-based alloy,15 kg ingot size,which is quite different from the 0.05 kg small ingot ...A newly designed TiAl alloy containing W,Nb,and B was produced through magnetic-flotation-melting method.Mass production of this TiAl-based alloy,15 kg ingot size,which is quite different from the 0.05 kg small ingot produced by arc-melting,has a large effect on the metallurgical properties,such as the grain size and the phase structures of the alloy.Heat treatments were carefully designed in order to reduce the amount of the high-temperature remaining β phase in the alloy,and to obtain optimal microstructures for mechanical behavior studies.A room-temperature ductility of 1.9% was obtained in the cast TiAl-based alloy after the appropriate heat treatment.The mechanical behavior of the large ingot through mass production of the TiAl-based alloy was largely improved by the alloy design and subsequent heat treatments.展开更多
Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increa...Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.展开更多
It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats w...It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously ex- tracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer. SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water.展开更多
A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradi...A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradient on steel surface, while the auxiliary TIG arc can change this phenomenon by heating the steel side. The auxiliary TIG improved the wettability of molten metal, resulting in the molten metal spreading fully on upper surfaces, front and back surface of steel, forming a sound brazing joint; the content of Cr and Ni elements in IMCs layer was increased, which can enhance the quality of the layer; and the microstructure of IMCs layer also was improved, increasing the bonding strength with the weld seam. The average tensile strength of the joint obtained with auxiliary TIG arc(146.7 MPa) was higher than that without auxiliary TIG arc(96.7 MPa).展开更多
Fractions of various heavy metals in a sulfidic minespoil were investigated. Column leaching experimentwas also conducted to simulate 'acid mine drainage' (AMD) from the minespoil. The results show thatleachin...Fractions of various heavy metals in a sulfidic minespoil were investigated. Column leaching experimentwas also conducted to simulate 'acid mine drainage' (AMD) from the minespoil. The results show thatleaching of heavy metals from the minespoil was extremely significant during the initial water flushing.The amounts of heavy metals leached out dramatically reduced after leaching twice. It is worthwhile tonote that in this study, Zn, Mn, Fe, As and Ni in the first leachate exceeded the total amount of eachcorresponding water-extractable (1:5, soil:water) metal contained in the minespoil sample. This appears tosuggest that 1:5 water extraction did not allow accurate estimation of water-leachable concentrations of theabove heavy metals. This work has implications for the management of sulfidic minespoils. Acid drainageof great environmental concerns is likely to occur only during heavy rainfall events after substantial solubleand readily exchangeable acid and metals are accumulated in the minespoils. The slow-reacting fractionsother than water-soluble and readily exchangeable fractions may pose little environmental hazards. This isparticularly true for Pb, As and Ni.展开更多
Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical prope...Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical properties of the materials beingused.Friction stir welding(FSW)is capable of joining dissimilar materials such as aluminum(Al)and copper(Cu)and thereforeresearchers have used this novel process for dissimilar joining.Consequently,several works pertaining to dissimilar joining,specifically Al?Cu,are available in the literature but they are scattered in different sources,which makes the task of gatheringinformation about dissimilar FSW of Al?Cu cumbersome.This work has been written with an aim to provide all pertinentinformation related to dissimilar FSW of Al?Cu at one place to ease the problems of researchers.It comprehensively covers andsummarizes the topics such as the effect of tool design and geometry,FSW process parameters,FSW strategies on mechanicalproperties,microstructure and formation of defects during dissimilar FSW of Al?Cu.In addition,it also presents and discussesseveral variants of dissimilar FSW of Al?Cu.Finally,this work not only puts forth major findings of the previous researchers but alsosuggests future recommendations for dissimilar FSW of Al?Cu.展开更多
A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of ci...A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of citrate acid complexa-tion combined with impregnation. In a nanocrystallite of LaCOl-xPtxO3, ions of lanthanum, cobalt, and platinum are evenly mixed at the atomic level and confined within the nanocrystallite. In the reduction process, platinum ions were reduced and migrated onto the surface of the nanocrystallite, and the platinum should be highly dispersed owing to the even mixing of the platinum ions in the precursor. When x = 0.05 or lower, the highest dispersion of Pt could be achieved. The highly dispersed Pt is stable, because of the strong interaction between Pt atoms and the support. The catalysts were characterized by BET surface area, temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, CO temperature-programmed desorption, and turnover frequency. Compared with general precious metal Pt catalysts, the LaCo0.95Pt0.05O3/ SiO2 catalyst exhibited better activity for CO oxidation, and it maintained stability at a high temperature of 400 ℃ for 250 h with complete CO conversion.展开更多
An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,c...An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.展开更多
To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31...To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.展开更多
Some magnetocaloric materials were used successfully in magnetic refrigeration application and became one of the critical parts of magnetic refrigeration technology whose delightful progresses were made worldwide in t...Some magnetocaloric materials were used successfully in magnetic refrigeration application and became one of the critical parts of magnetic refrigeration technology whose delightful progresses were made worldwide in the past 30 years. At the same time, the research on giant magnetocaloric materials will accelerate the development of room temperature magnetic refrigeration. In this paper, the new theoretical and experimental investigations on magnetic materials in room temperature application were described, including Gd and its binary and ternary intermetallic compounds, Mn-based compounds, La(Fe13-xMx)-based compounds and manganites. Based on the analysis of hysteresis, corrosion, cost and heat process, the comparison between different families of magnetic materials was discussed. Further research of room temperature magnetic refrigerant was suggested.展开更多
Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 a...Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.展开更多
The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron...The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The results show that the mechanical properties of Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease slightly when the Si content is below 1.0%.This can be attributed to the comprehensive effect of microstructure evolution,including the increase of nano-sized α-Fe,the coarsened grain size,and an increase in Al2 Cu content at the grain boundary.When the Si content is 1.5%,the mechanical properties of the Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease significantly,and this can be attributed to the agglomerated second intermetallics,which is resulted from the formation of excess Si particles.展开更多
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
基金Project (11204007) supported by the National Natural Science Foundation of ChinaProject (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province,ChinaProject (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province,China
文摘First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.
文摘目的:分析三氧化物聚合体和氢氧化钙两种药物在年轻恒牙活髓切断术中的特性、机制并比较临床疗效。方法:选取在我院口腔科确诊需行活髓切断术的年轻恒牙50颗作为观察对象,随机均分为观察组和对照组。行活髓切断术时,观察组采用三氧化物聚合体,对照组采用氢氧化钙作为盖髓药物,术后随诊1年,根据临床效果和X线片结果评价其疗效。结果:观察组术后3、6、12个月治疗成功率均高于对照组,差异有统计学意义( P <0.05)。结论:与氢氧化钙相比,三氧化物聚合体在活髓切断术作为盖髓药物,具有炎性低、密闭性高、成牙本质细胞层多、修复性牙本质层厚等优点,值得推广。
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
基金Project (50905099) supported by the National Natural Science Foundation of ChinaProject (20090131120027) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.
文摘Low-temperature soluble carbohydrate accumulations are commonly associated with anthocyanin coloration, attenuated growth and cold adaptation of cool-season grasses. The vrn-1 gene has potent effects on vernalization requirement, growth, and soluble carbohydrate accumulations of the winter-annual Triticeae species. Two hundred and four unmapped AFLP markers and genome-specific DNA markers genetically linked to the vrn-1 gene were used to detect QTL controlling soluble carbohydrate accumulations, anthocyanin coloration and growth characteristics in a segregating population derived from open pollinated Leymus cinereus x L. triticoides hybrids. These perennial Triticeae grasses are distinguished by adaptation and growth habit. As expected, positive trait correlations and pleiotropic gene effects were detected for soluble carbohydrate accumulations and anthocyanin coloration. Likewise, positive trait correlations and pleiotropic gene effects were detected for tillering, leaf development, leaf growth, regrowth and rhizome spread. However, soluble carbohydrate accumulations were not associated with attenuated growth. In fact, several DNA marker alleles, including one near vrn-Ns1, had positive effects on soluble leaf carbohydrate concentrations and low temperature growth. The corresponding DNA marker near vrn-Ns1 had more specific effects on tillering. We speculate that vrn-1 exerts quantitative effects on low-temperature soluble leaf carbohydrate accumulations and growth habit of the perennial Leymus. However, a number of other DNA markers displayed highly significant effects on soluble carbohydrate accumulations and various growth characteristics. Findings indicate that anthocyanin coloration may be a useful phenotypic marker for soluble carbohydrate accumulation. Although variation for soluble carbohydrates was not associated with attenuated growth in this population, this trait was under genetic control.
基金Project(11X-SP173V) supported by the U.S. Fossil Energy Materials ProgramProject supported by the U.S. National Science Foundation Combined Research-Curriculum Development(CRCD) ProgramProject(DE-AC05-00OR-22725 UT-Battelle,LLC) supported by Division of Materials Science and Engineering,Office of Basic Energy Science,U.S.Department of Energy
文摘A newly designed TiAl alloy containing W,Nb,and B was produced through magnetic-flotation-melting method.Mass production of this TiAl-based alloy,15 kg ingot size,which is quite different from the 0.05 kg small ingot produced by arc-melting,has a large effect on the metallurgical properties,such as the grain size and the phase structures of the alloy.Heat treatments were carefully designed in order to reduce the amount of the high-temperature remaining β phase in the alloy,and to obtain optimal microstructures for mechanical behavior studies.A room-temperature ductility of 1.9% was obtained in the cast TiAl-based alloy after the appropriate heat treatment.The mechanical behavior of the large ingot through mass production of the TiAl-based alloy was largely improved by the alloy design and subsequent heat treatments.
文摘Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.
基金This work is supported by the National Natural Science Foundation of China(40476063).
文摘It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously ex- tracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer. SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water.
文摘A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradient on steel surface, while the auxiliary TIG arc can change this phenomenon by heating the steel side. The auxiliary TIG improved the wettability of molten metal, resulting in the molten metal spreading fully on upper surfaces, front and back surface of steel, forming a sound brazing joint; the content of Cr and Ni elements in IMCs layer was increased, which can enhance the quality of the layer; and the microstructure of IMCs layer also was improved, increasing the bonding strength with the weld seam. The average tensile strength of the joint obtained with auxiliary TIG arc(146.7 MPa) was higher than that without auxiliary TIG arc(96.7 MPa).
基金Project partly supported by an internal grant of Southern Cross University,Australia(Project No.305093).
文摘Fractions of various heavy metals in a sulfidic minespoil were investigated. Column leaching experimentwas also conducted to simulate 'acid mine drainage' (AMD) from the minespoil. The results show thatleaching of heavy metals from the minespoil was extremely significant during the initial water flushing.The amounts of heavy metals leached out dramatically reduced after leaching twice. It is worthwhile tonote that in this study, Zn, Mn, Fe, As and Ni in the first leachate exceeded the total amount of eachcorresponding water-extractable (1:5, soil:water) metal contained in the minespoil sample. This appears tosuggest that 1:5 water extraction did not allow accurate estimation of water-leachable concentrations of theabove heavy metals. This work has implications for the management of sulfidic minespoils. Acid drainageof great environmental concerns is likely to occur only during heavy rainfall events after substantial solubleand readily exchangeable acid and metals are accumulated in the minespoils. The slow-reacting fractionsother than water-soluble and readily exchangeable fractions may pose little environmental hazards. This isparticularly true for Pb, As and Ni.
文摘Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical properties of the materials beingused.Friction stir welding(FSW)is capable of joining dissimilar materials such as aluminum(Al)and copper(Cu)and thereforeresearchers have used this novel process for dissimilar joining.Consequently,several works pertaining to dissimilar joining,specifically Al?Cu,are available in the literature but they are scattered in different sources,which makes the task of gatheringinformation about dissimilar FSW of Al?Cu cumbersome.This work has been written with an aim to provide all pertinentinformation related to dissimilar FSW of Al?Cu at one place to ease the problems of researchers.It comprehensively covers andsummarizes the topics such as the effect of tool design and geometry,FSW process parameters,FSW strategies on mechanicalproperties,microstructure and formation of defects during dissimilar FSW of Al?Cu.In addition,it also presents and discussesseveral variants of dissimilar FSW of Al?Cu.Finally,this work not only puts forth major findings of the previous researchers but alsosuggests future recommendations for dissimilar FSW of Al?Cu.
基金supported by the National Natural Science Foundation of China(Nos.21576192,21776214)
文摘A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of citrate acid complexa-tion combined with impregnation. In a nanocrystallite of LaCOl-xPtxO3, ions of lanthanum, cobalt, and platinum are evenly mixed at the atomic level and confined within the nanocrystallite. In the reduction process, platinum ions were reduced and migrated onto the surface of the nanocrystallite, and the platinum should be highly dispersed owing to the even mixing of the platinum ions in the precursor. When x = 0.05 or lower, the highest dispersion of Pt could be achieved. The highly dispersed Pt is stable, because of the strong interaction between Pt atoms and the support. The catalysts were characterized by BET surface area, temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, CO temperature-programmed desorption, and turnover frequency. Compared with general precious metal Pt catalysts, the LaCo0.95Pt0.05O3/ SiO2 catalyst exhibited better activity for CO oxidation, and it maintained stability at a high temperature of 400 ℃ for 250 h with complete CO conversion.
基金supported by the National Natural Science Foundation of China(21473073,21473074)‘‘13th Five-Year’’ Science and Technology Research of the Education Department of Jilin Province(2016403)+1 种基金the Development Project of Science and Technology of Jilin Province(20170101171JC,20180201068SF)the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(201703)~~
文摘An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.
基金Project(17JS083) supported by the Key Laboratory Program of Shaanxi Education Department,ChinaProject(2016JZ018) supported by the Key Program of Natural Science Research of Shaanxi Province,ChinaProject(51701162) supported by the National Natural Science Foundation of China
文摘To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.
基金Project(50876082) supported by the National Natural Science Foundation of ChinaProject(IRT0746) supported by the Changjiang Scholars and Innovative Research Team in University
文摘Some magnetocaloric materials were used successfully in magnetic refrigeration application and became one of the critical parts of magnetic refrigeration technology whose delightful progresses were made worldwide in the past 30 years. At the same time, the research on giant magnetocaloric materials will accelerate the development of room temperature magnetic refrigeration. In this paper, the new theoretical and experimental investigations on magnetic materials in room temperature application were described, including Gd and its binary and ternary intermetallic compounds, Mn-based compounds, La(Fe13-xMx)-based compounds and manganites. Based on the analysis of hysteresis, corrosion, cost and heat process, the comparison between different families of magnetic materials was discussed. Further research of room temperature magnetic refrigerant was suggested.
基金Project(51674303) supported by the National Natural Science Foundation of ChinaProject supported by National Youth Thousand Plan of China+2 种基金Project(2018RS3015) supported by Huxiang High-Level Talent Gathering Program of Hunan Province,ChinaProject(2019CX006) supported by Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China
文摘Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.
基金Projects(51704084,51605106) supported by the National Natural Science Foundation of ChinaProject(2017M623068) supported by China Postdoctoral Science Foundation+3 种基金Project(2015A030312003) supported by the Natural Science Foundation for Team Research of Guangdong Province,ChinaProject(JC(2016)1026)) supported by the Science and Technology Foundation of Guizhou Province of ChinaProject(KY(2017)101)) supported by the Young Talent Growth Foundation of Education Department of Guizhou Province of ChinaProject(RC2017(5788)) supported by the Science and Technology Plan of Guizhou Province of China
文摘The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The results show that the mechanical properties of Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease slightly when the Si content is below 1.0%.This can be attributed to the comprehensive effect of microstructure evolution,including the increase of nano-sized α-Fe,the coarsened grain size,and an increase in Al2 Cu content at the grain boundary.When the Si content is 1.5%,the mechanical properties of the Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease significantly,and this can be attributed to the agglomerated second intermetallics,which is resulted from the formation of excess Si particles.