期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于标签权重的协同过滤推荐算法 被引量:18
1
作者 雷曼 龚琴 +1 位作者 王纪超 王保群 《计算机应用》 CSCD 北大核心 2019年第3期634-638,共5页
针对传统协同过滤推荐算法中由于相似度计算导致推荐精度不足的问题,提出一种基于标签权重相似度量方法的协同过滤推荐算法。首先,通过改进当前算法中标签权重的计算,并构成用户-标签权重矩阵和物品-标签权重矩阵;其次,考虑到推荐系统... 针对传统协同过滤推荐算法中由于相似度计算导致推荐精度不足的问题,提出一种基于标签权重相似度量方法的协同过滤推荐算法。首先,通过改进当前算法中标签权重的计算,并构成用户-标签权重矩阵和物品-标签权重矩阵;其次,考虑到推荐系统是以用户为中心进行推荐,继而通过构建用户-物品关联矩阵来获取用户对物品最准确的评价和需求;最后,根据用户-物品的二部图,利用物质扩散算法计算基于标签权重的用户间相似度,并为目标用户生成推荐列表。实验结果表明,与一种基于"用户-项目-用户兴趣标签图"的协同好友推荐算法(UITGCF)相比,在稀疏度环境为0.1时该算法的召回率、准确率和F1值分别提高了14.69%、9.44%、17.23%。当推荐项目数量为10时,三个指标分别提高了17.99%、8.98%、16.27%。结果表明基于标签权重的协同过滤推荐算法可有效提高推荐结果。 展开更多
关键词 用户-标签 物品-标签权重 推荐系统 协同过滤 物质扩散
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部