With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works...With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.展开更多
Motions of single poly(c-caprolactone) (PCL) molecules during the formation of the dendrite crystals in ultrathin films are captured by single molecule fluorescence microscopy. The relationship of single molecule ...Motions of single poly(c-caprolactone) (PCL) molecules during the formation of the dendrite crystals in ultrathin films are captured by single molecule fluorescence microscopy. The relationship of single molecule diffusion coefficient with the crystal growth rate, together with radius curvature, side-branch spacing of dendrite crystal and morphology are examined. The results support Mullins-Sekerka (MS) instability as the origin of lamellar branching induced by a diffusion field generated by a gradient of polymer segment density ahead of the crystal. Further analysis of the molecular trajectories has recognized different types of motions, depending on the distance to the crystal front: Fickian diffusion in regions far away from the crystal, sub-diffusion in regions adjacent to the crystal, and directed motion between these two regions. Anti-correlation of successive steps is discovered accompanying the sub-diffusion, providing a clear signature of macromolecule crowding at the crystal growth front. This anomalous diffusion process in polymer ultrathin films presents a new insight into the understanding of the retarded dynamics of interfacial mass transport towards the crystal front. It is considered to play a decisive role in controlling the crystal growth and evolution of crystal morphology.展开更多
文摘With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.
基金supported by the National Natural Science Foundation of China (51573197)the National Basic Research Program of China (2014CB643601)
文摘Motions of single poly(c-caprolactone) (PCL) molecules during the formation of the dendrite crystals in ultrathin films are captured by single molecule fluorescence microscopy. The relationship of single molecule diffusion coefficient with the crystal growth rate, together with radius curvature, side-branch spacing of dendrite crystal and morphology are examined. The results support Mullins-Sekerka (MS) instability as the origin of lamellar branching induced by a diffusion field generated by a gradient of polymer segment density ahead of the crystal. Further analysis of the molecular trajectories has recognized different types of motions, depending on the distance to the crystal front: Fickian diffusion in regions far away from the crystal, sub-diffusion in regions adjacent to the crystal, and directed motion between these two regions. Anti-correlation of successive steps is discovered accompanying the sub-diffusion, providing a clear signature of macromolecule crowding at the crystal growth front. This anomalous diffusion process in polymer ultrathin films presents a new insight into the understanding of the retarded dynamics of interfacial mass transport towards the crystal front. It is considered to play a decisive role in controlling the crystal growth and evolution of crystal morphology.