Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil...Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.展开更多
This paper investigates the asymptotic properties of a modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models of two samples. The asymptotic null distribution of the modified li...This paper investigates the asymptotic properties of a modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models of two samples. The asymptotic null distribution of the modified likelihood ratio statistic is found to be X2^2, where X2^2 is a chi-squared distribution with 2 degrees of freedom.展开更多
基金supported by the Scientific and Technological Innovation Fund of Shanxi Agricultural University,China(No.2017YJ17)the Outstanding Doctor Funding Award of Shanxi Province,China(No.SXYBKY201720)+2 种基金the National Basic Research Program(973 Program)of China(No.2013CB127403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB15020402)the National Natural Science Foundation of China(No.41571130061)
文摘Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.
基金supported by the National Natural Science Foundation of China under Grant No. 10661003SRF for ROCS, SEM under Grant No. [2004]527the Natm'aI Science Foundation of Guangxi under Grant No. 0728092
文摘This paper investigates the asymptotic properties of a modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models of two samples. The asymptotic null distribution of the modified likelihood ratio statistic is found to be X2^2, where X2^2 is a chi-squared distribution with 2 degrees of freedom.