The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management ...The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management and control were ana- lyzed from external form to internal nature. Through introducing the value chain and relevant equipments of cold chain logistics, the correlation between the main technologies in Internet of Things and the common indices for cold chain logistics equipment management and control was analyzed in detail. The application values of Internet of Things technologies in cold chain logistics equipment management and control were illustrated, including the sample analysis on the application of radio-frequency identification (RFID). After the establishment of BSC performance evaluation index system of cold chain logistics equipment management and control, the optimization measures and suggestions on cold chain logistics equipment management and control under Internet of Things were put forward.展开更多
Based on the information system characteristics of mine, proposed network architecture design of the mine property. And in this framework based on the design of three-dimensional virtual mine described the application...Based on the information system characteristics of mine, proposed network architecture design of the mine property. And in this framework based on the design of three-dimensional virtual mine described the application of intelligent management platform. Three-dimensional virtual underground mine that shows the situation, the core application is through remote monitoring system of information exchange between devices (material object communication). Internet of things in the framework of mining three-dimensional virtual reconstruction of mine. On coal mine safety in the production process of human, machine and environment, control elements and their harmony and unity. 3D virtual mine management platform integrates personnel positioning, dust control, gas monitoring, roof pressure monitoring, fan-line monitoring and other subsystems. Platform through the underground mine sensing equipment to conduct various types of monitoring data integration, through the transport layer device to transmit the information to the application layer intelligence processing software platform, the system automatically handles the operational status of each subsystem and the need for safe production under the proper introduction of human factors deal with special event. 3D virtual mine management platform to mining, excavation, transport, ventilation and other safety information quickly and accurately transmitted to the ground operation control center. Underground for the first time on the linkage between systems in case of emergencies, to provide safety for management decision support.展开更多
A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (I...A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.展开更多
According to the development trend of intelligent logistics in our country, combining database, communication, GIS (Geography lnfolrnation System) technology, the paper study the key core technology of each module m...According to the development trend of intelligent logistics in our country, combining database, communication, GIS (Geography lnfolrnation System) technology, the paper study the key core technology of each module monitoring platform for vehicle monitoring system, and establish logistics transport vehicle monitoring platform that oriented small and medium-sized logistics enterprises, to realize the whole process of real-time monitoring for logistics and transport the vehicle from the warehouse to transportation, promote the informationization of logistics and transport.展开更多
This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system a...This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.展开更多
With the continuous development of networking technology, sensor networks have been widely used and has become an important field of information technology infrastructure, especially the real-time sensor networks prov...With the continuous development of networking technology, sensor networks have been widely used and has become an important field of information technology infrastructure, especially the real-time sensor networks provide the perceptual information for many intelligent applications provides sufficient information to support decision-making and the necessary basis. However, due to the intelligent application-aware, real-time information demands often cannot be converted to simple queries and query interface to sensor substrate exact match, With the development of technology, people’s expectations of the home and the definition of the family conferred no longer adhere to the traditional way of life, smart home has become a hot spot in recent years, the direction of research in the field of information technology. Embodied herein Things smart home design is based on FPGA technology, capable of real-time collection of the temperature, humidity and light intensity and other information, to achieve environmental control systems, intelligent fish gardening systems, intelligent catering systems, multimedia control systems and security alarm systems function, provide users with the new smart home networking experience.展开更多
Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to u...Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.展开更多
microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate wheth...microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage,we examined small RNAs in Volvox carteri,a multicellular species in the same family with Chlamydomonas reinhardtii.We identified 174 miRNAs in Volvox,with many of them being highly enriched in gonidia or somatic cells.The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo,suggesting that miRNAs play regulatory roles in the biology of green algae.Our catalog of miRNAs and their targets provides a resource for further studies on the evolution,biological functions,and genomic properties of miRNAs in green algae.展开更多
Complex cyber-physical network refers to a new generatio~ of complex networks whose normal functioning significantly relies on tight interactions between its physical and cyber compo- nents. Many modern critical infra...Complex cyber-physical network refers to a new generatio~ of complex networks whose normal functioning significantly relies on tight interactions between its physical and cyber compo- nents. Many modern critical infrastructures can be appropriately modelled as complex cyber-physical networks. Typical examples of such infrastructures are electrical power grids, WWW, public trans- portation systems, state financial networks, and the Interact. These critical facilities play important roles in ensuring the stability of society as well as the development of economy. Advances in informa- tion and communication technology open opportunities for malicious attackers to launch coordinated attacks on cyber-physical critical facilities in networked infrastructures from any Interact-accessible place. Cybersecurity of complex cyber-physical networks has emerged as a hot topic within this con- text. In practice, it is also very crucial to understand the interplay between the evolution of underlying network structures and the collective dynamics on these complex networks and consequently to design efficient security control strategies to protect the evolution of these networks. In this paper, cybersecu- rity of complex cyber-physical networks is first outlined and then some security enhancing techniques, with particular emphasis on safety communications, attack detection and fault-tolerant control, are suggested. Furthermore, a new class of efficient secure the achievement of desirable pinning synchronization control strategies are proposed for guaranteeing behaviors in complex cyber-physical networks against malicious attacks on nodes. The authors hope that this paper motivates to design enhanced security strategies for complex cyber-physical network systems, to realize resilient and secure critical infrastructures.展开更多
Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scalin...Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scaling phenomenon.For morphogen-induced patterning of gene expression,the positional information encoded in the local morphogen concentrations is decoded by the downstream genetic network(the decoder).In this paper,we show that the requirement of scaling sets severe constraints on the geometric structure of such a local decoder,which in turn enables deduction of mutants’behavior and extraction of regulation information without going into any molecular details.We demonstrate that the Drosophila gap gene system achieves scaling in the way consistent with our theory—the decoder geometry required by scaling correctly accounts for the observed gap gene expression pattern in nearly all maternal morphogen mutants.Furthermore,the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry.Our work provides a general theoretical framework for a large class of problems where scaling output is achieved by non-scaling inputs and a local decoder,as well as a unified understanding of scaling,mutants’behavior,and gene regulation for the Drosophila gap gene system.展开更多
In this paper, to better understand the impact of awareness and the network structure on epidemic transmission, we divide the population into four subpopulations corresponding to different physical states and consciou...In this paper, to better understand the impact of awareness and the network structure on epidemic transmission, we divide the population into four subpopulations corresponding to different physical states and conscious states, and we first propose a modified disease- awareness model, then verify the global stability of the disease-free and endemic equilib- ria, and finally present numerical simulations to demonstrate the theoretical analysis. By examining the spreading influences of model parameters, we find that the outbreak scale can be effectively controlled through increasing the spread rate of awareness or reducing the rate of awareness loss. That is to say, all sorts of media publicity are meaningful. Meanwhile, we find that infection will be affected by consciousness through the control variable.展开更多
基金Supported by the Project of Philosophy and Social Sciences during the 12th Five-year Plan of Guangxi Zhuang Autonomous Region,China (11FGL031)~~
文摘The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management and control were ana- lyzed from external form to internal nature. Through introducing the value chain and relevant equipments of cold chain logistics, the correlation between the main technologies in Internet of Things and the common indices for cold chain logistics equipment management and control was analyzed in detail. The application values of Internet of Things technologies in cold chain logistics equipment management and control were illustrated, including the sample analysis on the application of radio-frequency identification (RFID). After the establishment of BSC performance evaluation index system of cold chain logistics equipment management and control, the optimization measures and suggestions on cold chain logistics equipment management and control under Internet of Things were put forward.
文摘Based on the information system characteristics of mine, proposed network architecture design of the mine property. And in this framework based on the design of three-dimensional virtual mine described the application of intelligent management platform. Three-dimensional virtual underground mine that shows the situation, the core application is through remote monitoring system of information exchange between devices (material object communication). Internet of things in the framework of mining three-dimensional virtual reconstruction of mine. On coal mine safety in the production process of human, machine and environment, control elements and their harmony and unity. 3D virtual mine management platform integrates personnel positioning, dust control, gas monitoring, roof pressure monitoring, fan-line monitoring and other subsystems. Platform through the underground mine sensing equipment to conduct various types of monitoring data integration, through the transport layer device to transmit the information to the application layer intelligence processing software platform, the system automatically handles the operational status of each subsystem and the need for safe production under the proper introduction of human factors deal with special event. 3D virtual mine management platform to mining, excavation, transport, ventilation and other safety information quickly and accurately transmitted to the ground operation control center. Underground for the first time on the linkage between systems in case of emergencies, to provide safety for management decision support.
基金supported by the National Natural Science Foundation of China (Nos.60702006,60736002,60837004,60736036,60932004and61001121)the MOST International Cooperation Program(No.2008DFA11670)+1 种基金the 111 Project(No.B07005)the project funded by State Key Laboratory of AOCSN,China
文摘A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.
文摘According to the development trend of intelligent logistics in our country, combining database, communication, GIS (Geography lnfolrnation System) technology, the paper study the key core technology of each module monitoring platform for vehicle monitoring system, and establish logistics transport vehicle monitoring platform that oriented small and medium-sized logistics enterprises, to realize the whole process of real-time monitoring for logistics and transport the vehicle from the warehouse to transportation, promote the informationization of logistics and transport.
文摘This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.
文摘With the continuous development of networking technology, sensor networks have been widely used and has become an important field of information technology infrastructure, especially the real-time sensor networks provide the perceptual information for many intelligent applications provides sufficient information to support decision-making and the necessary basis. However, due to the intelligent application-aware, real-time information demands often cannot be converted to simple queries and query interface to sensor substrate exact match, With the development of technology, people’s expectations of the home and the definition of the family conferred no longer adhere to the traditional way of life, smart home has become a hot spot in recent years, the direction of research in the field of information technology. Embodied herein Things smart home design is based on FPGA technology, capable of real-time collection of the temperature, humidity and light intensity and other information, to achieve environmental control systems, intelligent fish gardening systems, intelligent catering systems, multimedia control systems and security alarm systems function, provide users with the new smart home networking experience.
基金supported by the National Natural Science Foundation of China(3121010390131123007)+2 种基金the National Basic Research Program of China(2013CB835200)the State Key Laboratory of Plant Genomics(2015B0129-01)Liya Wei was supported by the China Postdoctoral Science Foundation(2015M570170)
文摘Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.
基金supported by the National Natural Science Foundation of China(31225015)National Basic Research Program of China(2012CB910900)to Qi YiJun
文摘microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage,we examined small RNAs in Volvox carteri,a multicellular species in the same family with Chlamydomonas reinhardtii.We identified 174 miRNAs in Volvox,with many of them being highly enriched in gonidia or somatic cells.The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo,suggesting that miRNAs play regulatory roles in the biology of green algae.Our catalog of miRNAs and their targets provides a resource for further studies on the evolution,biological functions,and genomic properties of miRNAs in green algae.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB0800401the National Nature Science Foundation of China under Grant Nos.61304168,61673104,and 61322302+3 种基金the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20130595the National Ten Thousand Talent Program for Young Top-Notch Talents,the Six Talent Peaks of Jiangsu Province of China under Grant No.2014-DZXX-004the Doctoral Program of Higher Education of China under Grant No.20130092120030the Fundamental Research Funds for the Central Universities of China under Grant No.2242016K41030
文摘Complex cyber-physical network refers to a new generatio~ of complex networks whose normal functioning significantly relies on tight interactions between its physical and cyber compo- nents. Many modern critical infrastructures can be appropriately modelled as complex cyber-physical networks. Typical examples of such infrastructures are electrical power grids, WWW, public trans- portation systems, state financial networks, and the Interact. These critical facilities play important roles in ensuring the stability of society as well as the development of economy. Advances in informa- tion and communication technology open opportunities for malicious attackers to launch coordinated attacks on cyber-physical critical facilities in networked infrastructures from any Interact-accessible place. Cybersecurity of complex cyber-physical networks has emerged as a hot topic within this con- text. In practice, it is also very crucial to understand the interplay between the evolution of underlying network structures and the collective dynamics on these complex networks and consequently to design efficient security control strategies to protect the evolution of these networks. In this paper, cybersecu- rity of complex cyber-physical networks is first outlined and then some security enhancing techniques, with particular emphasis on safety communications, attack detection and fault-tolerant control, are suggested. Furthermore, a new class of efficient secure the achievement of desirable pinning synchronization control strategies are proposed for guaranteeing behaviors in complex cyber-physical networks against malicious attacks on nodes. The authors hope that this paper motivates to design enhanced security strategies for complex cyber-physical network systems, to realize resilient and secure critical infrastructures.
基金supported by the National Natural Science Foundation of China(12090053 and 32088101)。
文摘Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scaling phenomenon.For morphogen-induced patterning of gene expression,the positional information encoded in the local morphogen concentrations is decoded by the downstream genetic network(the decoder).In this paper,we show that the requirement of scaling sets severe constraints on the geometric structure of such a local decoder,which in turn enables deduction of mutants’behavior and extraction of regulation information without going into any molecular details.We demonstrate that the Drosophila gap gene system achieves scaling in the way consistent with our theory—the decoder geometry required by scaling correctly accounts for the observed gap gene expression pattern in nearly all maternal morphogen mutants.Furthermore,the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry.Our work provides a general theoretical framework for a large class of problems where scaling output is achieved by non-scaling inputs and a local decoder,as well as a unified understanding of scaling,mutants’behavior,and gene regulation for the Drosophila gap gene system.
文摘In this paper, to better understand the impact of awareness and the network structure on epidemic transmission, we divide the population into four subpopulations corresponding to different physical states and conscious states, and we first propose a modified disease- awareness model, then verify the global stability of the disease-free and endemic equilib- ria, and finally present numerical simulations to demonstrate the theoretical analysis. By examining the spreading influences of model parameters, we find that the outbreak scale can be effectively controlled through increasing the spread rate of awareness or reducing the rate of awareness loss. That is to say, all sorts of media publicity are meaningful. Meanwhile, we find that infection will be affected by consciousness through the control variable.