The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet S...The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level.展开更多
In this study, using the Geophysical Fluid Dynamics Laboratory Climate Model version 2pl (GFDL CM2pl) coupled model, the winter predictability barrier (WPB) is found to exist in the model not only in the growing p...In this study, using the Geophysical Fluid Dynamics Laboratory Climate Model version 2pl (GFDL CM2pl) coupled model, the winter predictability barrier (WPB) is found to exist in the model not only in the growing phase but also the Indian Ocean dipole (IOD) decaying phase of positive events due to the effect of initial errors. In particular, the WPB is stronger in the growing phase than in the decaying phase. These results indicate that initial errors can cause the WPB. The domi- nant patterns of the initial errors that cause the occurrence of the WPB often present an eastern-western dipole both in the surface and subsurface temperature components. These initial errors tend to concentrate in a few areas, and these areas may represent the sensitive areas of the predictions of positive IOD events. By increasing observations over these areas and eliminating initial errors here, the WPB phenomenon may be largely weakened and the forecast skill greatly improved.展开更多
The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFD...The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.展开更多
The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurf...The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurface temperature variations in the equator Pacific features a 20-40 year period and is North-South asymmetric about the equator.Decadal variations of the thermocline are most pronounced in the southwest of the Tropical Pacific.Decadal variation of the north-south asymmetric Sea Surface wind in the tropical Pacific,especially in the South Pacific Convergence,is the dominant mechanism of the nature decadal variation of the subsurface temperature in the equatorial Pacific.展开更多
Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley...Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.展开更多
Accurate physical and chemical properties of adsorbents are required for the efficient design of fixed bed adsorbers. The bed void and particle void are significant physical properties. One of the experimentally deter...Accurate physical and chemical properties of adsorbents are required for the efficient design of fixed bed adsorbers. The bed void and particle void are significant physical properties. One of the experimentally determination technique for the bed void is a breakthrough curve method. In the present paper, experimental conditions for determining the bed void from breakthrough curve were investigated because complex conditions are required. The values of bed void were determined from theoretical elution curve at the point of c/c0 = 0.5 under the condition of negligible amount adsorbed. The bed void value determined from elution curve was clearly affected by particle void and fluid velocity, and regarded as "apparent" bed void values. For large porosity particles, it was difficult to determine the true bed void value due to the effect of penetration into macro pores. Then, the bed void fraction can be determined safely from breakthrough curve when particles possessing small particle void are used.展开更多
The responses of the Arctic Oscillation(AO) to global black carbon(BC) and BC emitted from major regions were compared using the atmospheric general circulation model Geophysical Fluid Dynamics Laboratory(GFDL) atmosp...The responses of the Arctic Oscillation(AO) to global black carbon(BC) and BC emitted from major regions were compared using the atmospheric general circulation model Geophysical Fluid Dynamics Laboratory(GFDL) atmospheric general circulation model(AGCM) Atmospheric Model version 2.1(AM2.1). The results indicated that global BC could induce positive-phase AO responses, characterized by negative responses over the polar cap on 500 h Pa height fields, and zonal mean sea level pressure(SLP) decreasing while zonal wind increasing at 60°, with the opposite responses over midlatitudes. The AO indices distribution also shifted towards positive values. East Asian BC had similar impacts to that of global BC, while the responses to European BC were of opposite sign. South Asian BC and North American BC did not affect the AO significantly. Based on a simple linear assumption, we roughly estimated that the global BC emission increase could explain approximately 5% of the observed positive AO trend of +0.32 per decade during 1960 to 2000.展开更多
基金supported by the National Basic Research Program of China (973 Program) under Grant 2011CB309704the National Special Scientific Research Project for Public Interest under Grant 201006021the National Natural Science Foundation of China under Grants 40890155,U0733002,and 40810059005
文摘The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level.
基金sponsored by the National Basic Research Program of China (Grant No. 2012CB955202)the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201306018)
文摘In this study, using the Geophysical Fluid Dynamics Laboratory Climate Model version 2pl (GFDL CM2pl) coupled model, the winter predictability barrier (WPB) is found to exist in the model not only in the growing phase but also the Indian Ocean dipole (IOD) decaying phase of positive events due to the effect of initial errors. In particular, the WPB is stronger in the growing phase than in the decaying phase. These results indicate that initial errors can cause the WPB. The domi- nant patterns of the initial errors that cause the occurrence of the WPB often present an eastern-western dipole both in the surface and subsurface temperature components. These initial errors tend to concentrate in a few areas, and these areas may represent the sensitive areas of the predictions of positive IOD events. By increasing observations over these areas and eliminating initial errors here, the WPB phenomenon may be largely weakened and the forecast skill greatly improved.
基金supported by special projects of China Meteorological Administration(GYHY201006022)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05090406)
文摘The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.
基金supported by the Ministry of Science and the Technology of China (National Basic Research Program of China 2012CB955602)Natural Science Foundation of China (40830106,40921004 and 41176006)
文摘The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurface temperature variations in the equator Pacific features a 20-40 year period and is North-South asymmetric about the equator.Decadal variations of the thermocline are most pronounced in the southwest of the Tropical Pacific.Decadal variation of the north-south asymmetric Sea Surface wind in the tropical Pacific,especially in the South Pacific Convergence,is the dominant mechanism of the nature decadal variation of the subsurface temperature in the equatorial Pacific.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)
文摘Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.
文摘Accurate physical and chemical properties of adsorbents are required for the efficient design of fixed bed adsorbers. The bed void and particle void are significant physical properties. One of the experimentally determination technique for the bed void is a breakthrough curve method. In the present paper, experimental conditions for determining the bed void from breakthrough curve were investigated because complex conditions are required. The values of bed void were determined from theoretical elution curve at the point of c/c0 = 0.5 under the condition of negligible amount adsorbed. The bed void value determined from elution curve was clearly affected by particle void and fluid velocity, and regarded as "apparent" bed void values. For large porosity particles, it was difficult to determine the true bed void value due to the effect of penetration into macro pores. Then, the bed void fraction can be determined safely from breakthrough curve when particles possessing small particle void are used.
基金jointly supported by the National Basic Research Program of China(973 Program,2015CB453202 and 2012CB417403)the National Natural Science Foundation of China(41421004)
文摘The responses of the Arctic Oscillation(AO) to global black carbon(BC) and BC emitted from major regions were compared using the atmospheric general circulation model Geophysical Fluid Dynamics Laboratory(GFDL) atmospheric general circulation model(AGCM) Atmospheric Model version 2.1(AM2.1). The results indicated that global BC could induce positive-phase AO responses, characterized by negative responses over the polar cap on 500 h Pa height fields, and zonal mean sea level pressure(SLP) decreasing while zonal wind increasing at 60°, with the opposite responses over midlatitudes. The AO indices distribution also shifted towards positive values. East Asian BC had similar impacts to that of global BC, while the responses to European BC were of opposite sign. South Asian BC and North American BC did not affect the AO significantly. Based on a simple linear assumption, we roughly estimated that the global BC emission increase could explain approximately 5% of the observed positive AO trend of +0.32 per decade during 1960 to 2000.