To improve the inventory control strategy for enterprise and optimize inventory control parameters of existing external and interior reverse logistics, a multi-resource inventory control model is proposed to better si...To improve the inventory control strategy for enterprise and optimize inventory control parameters of existing external and interior reverse logistics, a multi-resource inventory control model is proposed to better simulate the logistics fact, which is aimed at periodic inventory checking and pull mode of inventory control strategy, based on the return product arrival time obeying Poisson distribution, the return product employing lotsize process and the nonzero lead time of manufaeturinge/remanufacturing. The rational cost function with multiple constraints is employed to describe the inventory model. The genetic algorithm is employed to solve the inventory cost function to obtain the optimal solution of inventory checking periods, safe inventory point, product lot-sizes and process lot-sizes of return product. An example is presented to prove the feasibility and validity of the proposed method. Moreover, the influence of manufacturing/remanufacturing lead time and reuse rate of return production on the inventory control strategy of enterprise is analyzed.展开更多
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its ca...Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its capacity on Pb(Ⅱ) adsorption was investigated. CFA with various crystaUinity was obtanied by refluxing it with sodium hydroxide (NaOH) solution having various concentrations (1-7 M) at various temperature and reflux time. To evaluate the effect of crystallinity of treated CFA on the adsorption capacity, adsorption of Pb(Ⅱ) solution with treated CFA was carried out. The research shows that the reflux of CFA with NaOH solution leads to the crystallinity of quartz and mullite in CFA decreased. The decrease is proportional with the concentration increasing, the temperature elevation, and the longer time. The reflux using NaOH solution with high concentration (〉 3 M) in addition causes a decrease in the crystallinity of quartz and mullite, also results in the formation of hydroxysodalite. The decrease of the CFA crystalllinity gives an increase in CFA adsorption capacity toward Pb(Ⅱ) solution.展开更多
Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databas...Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databases was used to identify studies that met the inclusion criteria for this review. The included studies were then critically appraised using the Downs and Black protocol. Results: Nine articles were found to meet the inclusion criteria, with an average score of 79% for methodological quality representative of a "high" standard of research. Conclusion: The evidence suggests that dehydration has a negative impact on physical performance for activities lasting more than 30 s in duration. However dehydration was found to have no significant impact on physical performance for activities lasting less than 15 s in duration.展开更多
Quantifying the functional relationships relating river discharge and weathering products places key constraints on the negative feedback between the silicate weathering and climate. In this study we analyze the conce...Quantifying the functional relationships relating river discharge and weathering products places key constraints on the negative feedback between the silicate weathering and climate. In this study we analyze the concentration–discharge relationships of weathering products from global rivers using previously compiled time-series datasets for concentrations and discharge from global rivers. To analyze the nature of the covariation between specific discharge and concentrations, we use both a power law equation and a recently developed solute production equation. The solute production equation allows us to quantify weathering efficiency, or the resistance to dilution at high runoff, via the Damkohler coefficient. These results are also compared to those derived using average concentration–discharge pairs.Both the power law exponent and the Damkohler coefficient increase and asymptote as catchments exhibit increasingly chemostatic behavior, resulting in an inverse relationship between the two parameters. We also show that using thedistribution of average concentration–discharge pairs from global rivers, rather than fitting concentration–discharge relationships for each individual river, underestimates global median weathering efficiency by up to a factor of ~10. This study demonstrates the utility of long time-series sampling of global rivers to elucidate controlling processes needed to quantify patterns in global silicate weathering rates.展开更多
In this paper, a lattice Boltzmann equation (LBE) model with multiple-relaxation-time (MRT) colli- sion operator is developed based on the Enskog theory for isothermal nonideal mixtures, which is an extension of t...In this paper, a lattice Boltzmann equation (LBE) model with multiple-relaxation-time (MRT) colli- sion operator is developed based on the Enskog theory for isothermal nonideal mixtures, which is an extension of the previous single relaxation time (SRT) LBE model (Guo and Zhao in Phys Rev E 68:035302, 2003). The present MRT-LBE model overcomes some inherent defects of the original SRT-LBE model such as the fixed Schmidt num- ber and limited viscosity ratio. It is also interestingly shown that the widely used Shan-Chen (SC) model, which is constructed heuristically based on the pseudo-potential concept, can also be regarded as a special case of the present model, and thus putting a solid foundation for this well-accepted multiphase LBE model. A series of nu- merical simulations, including the static droplet and lay- ered co-current flow, are conducted to test the applicability of the present model for immiscible fluids with different Schmidt numbers and large viscosity ratio, which may be difficult for the original SRT-LBE model and the SC model.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2003AA413210)
文摘To improve the inventory control strategy for enterprise and optimize inventory control parameters of existing external and interior reverse logistics, a multi-resource inventory control model is proposed to better simulate the logistics fact, which is aimed at periodic inventory checking and pull mode of inventory control strategy, based on the return product arrival time obeying Poisson distribution, the return product employing lotsize process and the nonzero lead time of manufaeturinge/remanufacturing. The rational cost function with multiple constraints is employed to describe the inventory model. The genetic algorithm is employed to solve the inventory cost function to obtain the optimal solution of inventory checking periods, safe inventory point, product lot-sizes and process lot-sizes of return product. An example is presented to prove the feasibility and validity of the proposed method. Moreover, the influence of manufacturing/remanufacturing lead time and reuse rate of return production on the inventory control strategy of enterprise is analyzed.
文摘Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, including quartz and mullite. In this study, the effect of CFA crystallinity toward its capacity on Pb(Ⅱ) adsorption was investigated. CFA with various crystaUinity was obtanied by refluxing it with sodium hydroxide (NaOH) solution having various concentrations (1-7 M) at various temperature and reflux time. To evaluate the effect of crystallinity of treated CFA on the adsorption capacity, adsorption of Pb(Ⅱ) solution with treated CFA was carried out. The research shows that the reflux of CFA with NaOH solution leads to the crystallinity of quartz and mullite in CFA decreased. The decrease is proportional with the concentration increasing, the temperature elevation, and the longer time. The reflux using NaOH solution with high concentration (〉 3 M) in addition causes a decrease in the crystallinity of quartz and mullite, also results in the formation of hydroxysodalite. The decrease of the CFA crystalllinity gives an increase in CFA adsorption capacity toward Pb(Ⅱ) solution.
文摘Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databases was used to identify studies that met the inclusion criteria for this review. The included studies were then critically appraised using the Downs and Black protocol. Results: Nine articles were found to meet the inclusion criteria, with an average score of 79% for methodological quality representative of a "high" standard of research. Conclusion: The evidence suggests that dehydration has a negative impact on physical performance for activities lasting more than 30 s in duration. However dehydration was found to have no significant impact on physical performance for activities lasting less than 15 s in duration.
基金supported by a Stanford EDGE-STEM Fellowshipinitiated under NSF EAR-1254156 to Kate Maher and was also supported by the California Alliance Research Exchange NSF HRD-1306595 to C.Page Chamberlain
文摘Quantifying the functional relationships relating river discharge and weathering products places key constraints on the negative feedback between the silicate weathering and climate. In this study we analyze the concentration–discharge relationships of weathering products from global rivers using previously compiled time-series datasets for concentrations and discharge from global rivers. To analyze the nature of the covariation between specific discharge and concentrations, we use both a power law equation and a recently developed solute production equation. The solute production equation allows us to quantify weathering efficiency, or the resistance to dilution at high runoff, via the Damkohler coefficient. These results are also compared to those derived using average concentration–discharge pairs.Both the power law exponent and the Damkohler coefficient increase and asymptote as catchments exhibit increasingly chemostatic behavior, resulting in an inverse relationship between the two parameters. We also show that using thedistribution of average concentration–discharge pairs from global rivers, rather than fitting concentration–discharge relationships for each individual river, underestimates global median weathering efficiency by up to a factor of ~10. This study demonstrates the utility of long time-series sampling of global rivers to elucidate controlling processes needed to quantify patterns in global silicate weathering rates.
基金This work was financially supported by the National Natural Science Foundation of China (51125024) and the National Basic Research Programme of China (2011CB707305).
文摘In this paper, a lattice Boltzmann equation (LBE) model with multiple-relaxation-time (MRT) colli- sion operator is developed based on the Enskog theory for isothermal nonideal mixtures, which is an extension of the previous single relaxation time (SRT) LBE model (Guo and Zhao in Phys Rev E 68:035302, 2003). The present MRT-LBE model overcomes some inherent defects of the original SRT-LBE model such as the fixed Schmidt num- ber and limited viscosity ratio. It is also interestingly shown that the widely used Shan-Chen (SC) model, which is constructed heuristically based on the pseudo-potential concept, can also be regarded as a special case of the present model, and thus putting a solid foundation for this well-accepted multiphase LBE model. A series of nu- merical simulations, including the static droplet and lay- ered co-current flow, are conducted to test the applicability of the present model for immiscible fluids with different Schmidt numbers and large viscosity ratio, which may be difficult for the original SRT-LBE model and the SC model.