Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
The development of single-component white emitters for white light-emitting diodes(WLEDs)remains challenging.Herein,a rare earth-free white light-emitting composite is developed by assembling blue-emitting carbon dots...The development of single-component white emitters for white light-emitting diodes(WLEDs)remains challenging.Herein,a rare earth-free white light-emitting composite is developed by assembling blue-emitting carbon dots(CDs)and yellow-emitting Cs_(2)InCl_(5)·H_(2)O:Sb^(3+)metal halide crystals via a facile liquid-liquid diffusion-assisted crystallization approach.The encapsulation mechanism is then analyzed.Depending on the ratios of blue/yellow emitters,these luminescent composites exhibit white light emission with tunable cold and warm hues.The composites also possess prominent ultraviolet resistance,thermal tolerance,and good stability at about 200°C.By employing such“CDs in metal halide”composites as a converter,a WLED is successfully fabricated with a high color rendering index of 93.6,benefiting from the assembled blue and yellow broadband emission.With this strategy,the developed composites show great promise in next-generation WLED lighting.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金supported by the National Natural Science Foundations of China (51961145101)Guangzhou Science & Technology Project (202007020005)+3 种基金the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2018) for Prof. Bingfu Leithe National Key R&D Program of China (2020YFB0407902)Guangdong Provincial Science & Technology Project (2021A0505050006 and 2021B0707010003)Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (2021KJ122)。
文摘The development of single-component white emitters for white light-emitting diodes(WLEDs)remains challenging.Herein,a rare earth-free white light-emitting composite is developed by assembling blue-emitting carbon dots(CDs)and yellow-emitting Cs_(2)InCl_(5)·H_(2)O:Sb^(3+)metal halide crystals via a facile liquid-liquid diffusion-assisted crystallization approach.The encapsulation mechanism is then analyzed.Depending on the ratios of blue/yellow emitters,these luminescent composites exhibit white light emission with tunable cold and warm hues.The composites also possess prominent ultraviolet resistance,thermal tolerance,and good stability at about 200°C.By employing such“CDs in metal halide”composites as a converter,a WLED is successfully fabricated with a high color rendering index of 93.6,benefiting from the assembled blue and yellow broadband emission.With this strategy,the developed composites show great promise in next-generation WLED lighting.