As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with...A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.展开更多
We assembled a ternary blend bulk heterojunction polymer solar cell(PSCs) containing P3HT(donor) and PC61BM(acceptor) incorporated with a small molecule oligomer, dihexyl-quaterthiophene(DH4T) as a third component. By...We assembled a ternary blend bulk heterojunction polymer solar cell(PSCs) containing P3HT(donor) and PC61BM(acceptor) incorporated with a small molecule oligomer, dihexyl-quaterthiophene(DH4T) as a third component. By optimizing the contents of DH4 T, we increased the power conversion efficiency of ternary P3HT:DH4T:PC61BM PSCs to 4.17% from 3.44% of binary P3HT:PC61BM PSCs under AM 1.5 G of 100 m W/cm2 intensity. The major improvement is from the increase of the short circuit current and fill factor that is due to the increased light absorption at short wavelength, the balanced charge carrier transportation and the enhanced hole evacuation by a DH4T-enriched layer at the anode interface. In this work, we demonstrated that the efficiency of the PSCs can be enhanced by using low-bandgap conjugated polymer and its oligomer as donors and fullerene derivatives as acceptors.展开更多
Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based so...Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.展开更多
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金the Joint Researh Fund for Overseas Chinese Scholars, and the National Natural Science Foundation of China (50828301)the NSFC (50990065, U0634003, and 60937001)+1 种基金MOST (2009CB603601)973 project (2009CB623604)
文摘A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.
基金financially supported by the National Natural Science Foundation of China(21374120)support by 100 Talents Program of the Chinese Academy of Sciences
文摘We assembled a ternary blend bulk heterojunction polymer solar cell(PSCs) containing P3HT(donor) and PC61BM(acceptor) incorporated with a small molecule oligomer, dihexyl-quaterthiophene(DH4T) as a third component. By optimizing the contents of DH4 T, we increased the power conversion efficiency of ternary P3HT:DH4T:PC61BM PSCs to 4.17% from 3.44% of binary P3HT:PC61BM PSCs under AM 1.5 G of 100 m W/cm2 intensity. The major improvement is from the increase of the short circuit current and fill factor that is due to the increased light absorption at short wavelength, the balanced charge carrier transportation and the enhanced hole evacuation by a DH4T-enriched layer at the anode interface. In this work, we demonstrated that the efficiency of the PSCs can be enhanced by using low-bandgap conjugated polymer and its oligomer as donors and fullerene derivatives as acceptors.
基金supported by the Australian Research Council (ARC) through Discovery Project programs
文摘Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.