Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity...Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity field construction for dipping formations, and pseudo-well constrained impedance inversion. We used an optimal integration of geophysical techniques results in a set of reliable and effective workflows to predict gas hydrates. The results show that the integrated analysis of the combination of reflectivity amplitude, instantaneous phase, interval velocity, relative impedance, absolute impedance, and AVO intercept is a valid combination of techniques for identifying the BSR (Bottom Simulated Reflector) from the lower boundary of the gas hydrates. Integration of seismic sections, relative and absolute impedance sections, and interval velocity sections can improve the validity of gas hydrates determination. The combination of instantaneous frequency, energy half attenuation time, interval velocity, AVO intercept, AVO product, and AVO fluid factor accurately locates the escaped gas beneath the BSR. With these conclusions, the combined techniques have been used to successfully predict the gas hydrates in the Dongsha Sea area.展开更多
Polyacrylamide (PAM) film was electrosynthesized on mild steel by cyclic voltammetry using Ce (IV) salt-oxalic acid as supporting electrolyte. Polymerization was initiated by a free radical that was formed by the ...Polyacrylamide (PAM) film was electrosynthesized on mild steel by cyclic voltammetry using Ce (IV) salt-oxalic acid as supporting electrolyte. Polymerization was initiated by a free radical that was formed by the fast reaction of oxalic acid and Ce (IV). The electrolysis of the reaction solution resulted in regeneration of Ce (IV), which could oxidize oxalic acid to produce radicals. The effect of temperature on the yield of electroinitiated polymerization was performed. The potential sweep rates were changed to achieve the polymer film with different thickness. Protective properties of the PAM film for corrosion of mild steel in 1 M NaCI aqueous solution were investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The structure of PAM film on mild steel was investigated by using physicochemical methods such as elemental analysis of C, H, N, physical chemical methods and FTIR spectrometer. The influence of scan repetition and scan rate on the formation of polymer film was studied at a current density of 1 mA/cm2. The results of these studies reveal that the corrosion resistance of the PAM-coated mild steel was significantly higher and the corrosion rate was considerably lower than that of uncoated steel. The PAM film was formed with lower sweep rate leading to more positive shift of corrosion potential and greater charge transfer resistance, reflecting higher inhibition for corrosion of the mild steel.展开更多
The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical me...The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical methods. In the case of application of chemical methods well-soluble substances were added into water. It was ascertained that the application of membrane technology makes it possible to obtain antioxidant water with negative ORR. Different energy change in a time unit can be applied in a whole number of technological processes and reveals new possibilities for many branches of industry.展开更多
The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the...The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the paper. Using different physico-chemical methods, it has been found that uranium and tritium content in the water exceeds the background values of the flood plain of the River Yenisei. It has been shown that a wide range of radionuclides of different genesis flows into the waters of the Yenisei River. It has been demonstrated that radionuclides are transported by the water flow in the form of molecular solution or with suspended matter. In this case, the suspended matter consists of pelitic finely dispersed mineral particles, plant and organic detritus and living biological objects (for example, worms). It has been shown that the main contribution to radionuclide and metal accumulation is made by humic substances covering the panicles of the suspended matter and actively participating in the formation of complexes with radionuclides and heavy metals. As a result of this work, the artificial radionuclide inflow into the ecosystem of the River Yenisei has been evidenced.展开更多
To study the Fe-M interactions and their effects on 31p NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M=Zn, 3: M=Cd, 4: M=Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X=C1, 6: X=...To study the Fe-M interactions and their effects on 31p NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M=Zn, 3: M=Cd, 4: M=Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X=C1, 6: X=SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)〉S(3)〉S(4) and S(3),.~S(6)〉S(5), indicating that 6 is stable and may be synthesized. The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2. The strength I of Fe-M interactions follows I(2)≈I(3)〈I(4). The Fe-Cd interactions of 3 and 6, which contain thiocyanate, are stronger than that of 5 with chloride. The charge-transfer, which enhances with the increasing of Fe-M interaction strength, comes from Et, Ph, py, CO groups towards P, Fe, and M atoms. Because the delocalization of thiocyanate disperses the charge of M2+, the charge-transfer of the complexes with thiocyanate is stronger than that with chloride. There is a a-bond between Fe and Hg atoms in 4. However, in binuclear complexes except 4, the Fe-M interactions act as nFe→nM, σP-Fe→nM and σC-Fe→nM delocalization, and the N-M interactions mainly act as nN→nM delocalization. In binuclear complexes, due to the Fe→M interactions, the strong σFe--C→σ*Fe--p or σFe-Hg→σ*Fe--I2 delocalization and the charge-transfer, the electron density on P nucleus is increased, and thus upfield 31p chemical shifts are caused (compared with mononuclear complex 1).展开更多
Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanc...Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanced by two few-cycle pulses compared with the level achievable by a single few-cycle pulse as long as the time delay between two pulses is chosen properly, and the pulse duration of two lasers plays an important role in the aligning process of D2 molecules.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved u...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.展开更多
A novel thermogravimetric analyzer system of furnace with multiple temperature controller was described,which mainly decreased the analysis cycle duration down to 20 min.Furthermore,the present C591 rapid analyzer sys...A novel thermogravimetric analyzer system of furnace with multiple temperature controller was described,which mainly decreased the analysis cycle duration down to 20 min.Furthermore,the present C591 rapid analyzer system under software can monitor and control some coal physical and chemical properties like change of coal,control com- bustion regulation,operation of coal mixture,and improvement of the turnover rate of the transportation facilities as well.展开更多
Traditionally, differentiation of syndromes of Traditional Chinese Medicine (TCM) mainly depends on the information obtained from four diagnosis methods. Now many physicochemical parameters are available in clinic. Th...Traditionally, differentiation of syndromes of Traditional Chinese Medicine (TCM) mainly depends on the information obtained from four diagnosis methods. Now many physicochemical parameters are available in clinic. There exists great correlation between TCM syndromes and physicochemical parameters. The objective of the paper is to analyze the correlation between TCM syndromes and physicochemical parameters quantitatively. Correlation analysis has been widely studied and many analysis methods have been developed. Mutual information based on entropy can measure arbitrary dependence between variables. It has been applied to many kinds of fields, especially to pattern recognition. But most works are restricted to discrete variables and little work has been done to study the relation between discrete and continuous variables. A novel algorithm is proposed to calculate the mutual information between discrete and continuous variables. It is used to analyze the correlation between TCM syndromes and physicochemical parameters.展开更多
Phillip Zarrilli is an acting teacher whose pedagogy incorporates the Asian disciplines of hatha yoga, kalarippayattu, and t 'ai chi ch 'uan. His intercultural pedagogy would be best labeled as "psychophysical" ba...Phillip Zarrilli is an acting teacher whose pedagogy incorporates the Asian disciplines of hatha yoga, kalarippayattu, and t 'ai chi ch 'uan. His intercultural pedagogy would be best labeled as "psychophysical" based on his own assertions and when bearing in mind the traditions that he considers most personally influential, all of which have intercultural elements, both Western and Asian. This paper examines Zarrilli's personal origins, his pedagogy, his teaching influences, and his legacy based on his artistic progeny. Information was gathered through interviews, personal observation, on-site participation, and literature. The subjects of these analyses were: the disciplines of Asian origin relevant to Zarrilli's pedagogy; how his teaching influences his students; Zarrilli's personal development from university to his present international teaching, directing, and writing; his past and current projects; and what his work means today.展开更多
Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effect...Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effects. Coal includes two types of sulfur: organic and inorganic. While inorganic sulfur can be completely removed with physical desulfurization methods, organic sulfur can be removed only by chemical desulfurization methods. But chemical methods are not only expensive but also difficult processes. Firstly in desulfurization, types of the sulfur content in coal should be well characterized. High sulfur Gediz-Turkey coal has been chosen to this study. This coal basin is located in the centre of the Turkey. In this study, characterization and desulfurization possibilities of high sulfur Gediz coal were investigated. For this purpose, several physical and chemical characterization methods such as proximate and ultimate coal analysis (ash, calorific value, volatile matter, moisture and sulfur analysis), mineralogical and petrographic analysis, fourier transform infrared spectroscopy, scanning electron microscope were used. Results of these analysis are shown that Gediz coals include 3.15% pyritic sulfur and 2.89% organic sulfur. Removing pyritic sulfur from Gediz-Turkey coal with physical methods such as gravity and sink-float separation is not possible because pyrite particle has 1-2 micron liberation size in coal.展开更多
This paper reports some results of geoscientific investigations of the shallow subsurface beneath the Nazca geoglyphs in the stone desert in southern Peru. A resistivity and georadar survey was accompanied by soil sam...This paper reports some results of geoscientific investigations of the shallow subsurface beneath the Nazca geoglyphs in the stone desert in southern Peru. A resistivity and georadar survey was accompanied by soil sampling at a test site in the Palpa district. The resulting images of the two geophysical methods indicate similar structures. Georadar enables a fast and continuous data acquisition but is restricted in its depth of penetration. Despite the dry surface conditions, the electrical method yielded good results in the desert area. The resulting resistivity images for both vertical and horizontal slices provide structural information that might be interpreted in terms of lithology and water content. A promising correlation between sulfate content and electrical resistivity at shallow depth was observed that might be helpful to provide insight into the migration of chemical constituents. The approach to combine geophysical, mineralogical and geochemical methods proves to be successful to extend the knowledge on the weathering processes in the desert soil.展开更多
Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application r...Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application results so far. Based on the 1 /100 000 stream sediment anomaly survey,the methods of 1 /20 000 soil geochemical measurement,trenching engineering on the earth's surface and 1 /10 000 IP intermediate gradient survey were all used to verify and decompose drainage anomalies,as well as to find and locate ore bodies. In this way,an effective,economical and quick prospecting method was concluded,which focuses on the middle and lower mountain forest swamp landscape in the northern part of Daxing'anling,and provides reference for the prospecting in the area.展开更多
Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physico...Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties.Recently,benzoxaboroles were widely applied as antifungal,antibacterial,antiviral,anti-parasite,and anti-inflammatory agents.This review covers the properties,synthetic methods and applications of benzoxaboroles in medicinal chemistry.展开更多
In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-ste...In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-step hydrothermal process and subsequent electrochemical treatment.The electrode delivers a high specific discharge capacity of up to 2470.4 F g^(-1) at 1 A g^(-1) and high rate performances of1635.6 F g^(-1) at 10 A g^(-1) and 910.2 F g^(-1) even at 32 A g^(-1).Cycling tests indicate that NiCoMnS_(4) could maintain >91.1% of its initial capacity and nearly 100% Coulombic efficiency over10,000 cycles at 8 A g^(-1).An aqueous asymmetric supercapacitor assembled with NiCoMnS_(4) as the cathode,activated carbon as the anode,and 1 mol L^(-1) KOH as the electrolyte delivers an energy density of 68.2 W h kg^(-1)at 850.1 W kg^(-1) and capacity retention of 92.5% after 10,000 cycles at 4 A g^(-1).Given the excellent performance and simple material preparation of our proposed device,this study provides a valuable foundation for the development of self-supported metallic sulfide-based electrodes with high electrochemical properties for potential application in aqueous asymmetric supercapacitors.展开更多
基金National Gas Hydrates Integral Appraisal Project (GZH200200203-05).
文摘Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity field construction for dipping formations, and pseudo-well constrained impedance inversion. We used an optimal integration of geophysical techniques results in a set of reliable and effective workflows to predict gas hydrates. The results show that the integrated analysis of the combination of reflectivity amplitude, instantaneous phase, interval velocity, relative impedance, absolute impedance, and AVO intercept is a valid combination of techniques for identifying the BSR (Bottom Simulated Reflector) from the lower boundary of the gas hydrates. Integration of seismic sections, relative and absolute impedance sections, and interval velocity sections can improve the validity of gas hydrates determination. The combination of instantaneous frequency, energy half attenuation time, interval velocity, AVO intercept, AVO product, and AVO fluid factor accurately locates the escaped gas beneath the BSR. With these conclusions, the combined techniques have been used to successfully predict the gas hydrates in the Dongsha Sea area.
文摘Polyacrylamide (PAM) film was electrosynthesized on mild steel by cyclic voltammetry using Ce (IV) salt-oxalic acid as supporting electrolyte. Polymerization was initiated by a free radical that was formed by the fast reaction of oxalic acid and Ce (IV). The electrolysis of the reaction solution resulted in regeneration of Ce (IV), which could oxidize oxalic acid to produce radicals. The effect of temperature on the yield of electroinitiated polymerization was performed. The potential sweep rates were changed to achieve the polymer film with different thickness. Protective properties of the PAM film for corrosion of mild steel in 1 M NaCI aqueous solution were investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The structure of PAM film on mild steel was investigated by using physicochemical methods such as elemental analysis of C, H, N, physical chemical methods and FTIR spectrometer. The influence of scan repetition and scan rate on the formation of polymer film was studied at a current density of 1 mA/cm2. The results of these studies reveal that the corrosion resistance of the PAM-coated mild steel was significantly higher and the corrosion rate was considerably lower than that of uncoated steel. The PAM film was formed with lower sweep rate leading to more positive shift of corrosion potential and greater charge transfer resistance, reflecting higher inhibition for corrosion of the mild steel.
文摘The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical methods. In the case of application of chemical methods well-soluble substances were added into water. It was ascertained that the application of membrane technology makes it possible to obtain antioxidant water with negative ORR. Different energy change in a time unit can be applied in a whole number of technological processes and reveals new possibilities for many branches of industry.
文摘The results of monitoring the radiation-chemical situation in the middle reach of the Yenisei River located in the nearest zone of the influence of the Mining and Chemical Combine of Rosatom have been described in the paper. Using different physico-chemical methods, it has been found that uranium and tritium content in the water exceeds the background values of the flood plain of the River Yenisei. It has been shown that a wide range of radionuclides of different genesis flows into the waters of the Yenisei River. It has been demonstrated that radionuclides are transported by the water flow in the form of molecular solution or with suspended matter. In this case, the suspended matter consists of pelitic finely dispersed mineral particles, plant and organic detritus and living biological objects (for example, worms). It has been shown that the main contribution to radionuclide and metal accumulation is made by humic substances covering the panicles of the suspended matter and actively participating in the formation of complexes with radionuclides and heavy metals. As a result of this work, the artificial radionuclide inflow into the ecosystem of the River Yenisei has been evidenced.
基金This work was supported by the Natural Science Foundation of Guangdong Province (No.5005938) and the Research Project of Ministry of Education and Guangdong Province (No.2007A090302046).
文摘To study the Fe-M interactions and their effects on 31p NMR, the structures of Fe(CO)3(EtPhPpy)2 1, Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M=Zn, 3: M=Cd, 4: M=Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X=C1, 6: X=SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)〉S(3)〉S(4) and S(3),.~S(6)〉S(5), indicating that 6 is stable and may be synthesized. The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2. The strength I of Fe-M interactions follows I(2)≈I(3)〈I(4). The Fe-Cd interactions of 3 and 6, which contain thiocyanate, are stronger than that of 5 with chloride. The charge-transfer, which enhances with the increasing of Fe-M interaction strength, comes from Et, Ph, py, CO groups towards P, Fe, and M atoms. Because the delocalization of thiocyanate disperses the charge of M2+, the charge-transfer of the complexes with thiocyanate is stronger than that with chloride. There is a a-bond between Fe and Hg atoms in 4. However, in binuclear complexes except 4, the Fe-M interactions act as nFe→nM, σP-Fe→nM and σC-Fe→nM delocalization, and the N-M interactions mainly act as nN→nM delocalization. In binuclear complexes, due to the Fe→M interactions, the strong σFe--C→σ*Fe--p or σFe-Hg→σ*Fe--I2 delocalization and the charge-transfer, the electron density on P nucleus is increased, and thus upfield 31p chemical shifts are caused (compared with mononuclear complex 1).
文摘Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanced by two few-cycle pulses compared with the level achievable by a single few-cycle pulse as long as the time delay between two pulses is chosen properly, and the pulse duration of two lasers plays an important role in the aligning process of D2 molecules.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.
文摘A novel thermogravimetric analyzer system of furnace with multiple temperature controller was described,which mainly decreased the analysis cycle duration down to 20 min.Furthermore,the present C591 rapid analyzer system under software can monitor and control some coal physical and chemical properties like change of coal,control com- bustion regulation,operation of coal mixture,and improvement of the turnover rate of the transportation facilities as well.
基金The research has been supported by National Basic Research Program of China(973 Grant 2003CB517106) MOSTProjects (No.2004DFB02100)
文摘Traditionally, differentiation of syndromes of Traditional Chinese Medicine (TCM) mainly depends on the information obtained from four diagnosis methods. Now many physicochemical parameters are available in clinic. There exists great correlation between TCM syndromes and physicochemical parameters. The objective of the paper is to analyze the correlation between TCM syndromes and physicochemical parameters quantitatively. Correlation analysis has been widely studied and many analysis methods have been developed. Mutual information based on entropy can measure arbitrary dependence between variables. It has been applied to many kinds of fields, especially to pattern recognition. But most works are restricted to discrete variables and little work has been done to study the relation between discrete and continuous variables. A novel algorithm is proposed to calculate the mutual information between discrete and continuous variables. It is used to analyze the correlation between TCM syndromes and physicochemical parameters.
文摘Phillip Zarrilli is an acting teacher whose pedagogy incorporates the Asian disciplines of hatha yoga, kalarippayattu, and t 'ai chi ch 'uan. His intercultural pedagogy would be best labeled as "psychophysical" based on his own assertions and when bearing in mind the traditions that he considers most personally influential, all of which have intercultural elements, both Western and Asian. This paper examines Zarrilli's personal origins, his pedagogy, his teaching influences, and his legacy based on his artistic progeny. Information was gathered through interviews, personal observation, on-site participation, and literature. The subjects of these analyses were: the disciplines of Asian origin relevant to Zarrilli's pedagogy; how his teaching influences his students; Zarrilli's personal development from university to his present international teaching, directing, and writing; his past and current projects; and what his work means today.
文摘Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effects. Coal includes two types of sulfur: organic and inorganic. While inorganic sulfur can be completely removed with physical desulfurization methods, organic sulfur can be removed only by chemical desulfurization methods. But chemical methods are not only expensive but also difficult processes. Firstly in desulfurization, types of the sulfur content in coal should be well characterized. High sulfur Gediz-Turkey coal has been chosen to this study. This coal basin is located in the centre of the Turkey. In this study, characterization and desulfurization possibilities of high sulfur Gediz coal were investigated. For this purpose, several physical and chemical characterization methods such as proximate and ultimate coal analysis (ash, calorific value, volatile matter, moisture and sulfur analysis), mineralogical and petrographic analysis, fourier transform infrared spectroscopy, scanning electron microscope were used. Results of these analysis are shown that Gediz coals include 3.15% pyritic sulfur and 2.89% organic sulfur. Removing pyritic sulfur from Gediz-Turkey coal with physical methods such as gravity and sink-float separation is not possible because pyrite particle has 1-2 micron liberation size in coal.
文摘This paper reports some results of geoscientific investigations of the shallow subsurface beneath the Nazca geoglyphs in the stone desert in southern Peru. A resistivity and georadar survey was accompanied by soil sampling at a test site in the Palpa district. The resulting images of the two geophysical methods indicate similar structures. Georadar enables a fast and continuous data acquisition but is restricted in its depth of penetration. Despite the dry surface conditions, the electrical method yielded good results in the desert area. The resulting resistivity images for both vertical and horizontal slices provide structural information that might be interpreted in terms of lithology and water content. A promising correlation between sulfate content and electrical resistivity at shallow depth was observed that might be helpful to provide insight into the migration of chemical constituents. The approach to combine geophysical, mineralogical and geochemical methods proves to be successful to extend the knowledge on the weathering processes in the desert soil.
基金Supported by project of Special Service Funds for Gold Geology of Gold Headquarters(2008,No.20130301)
文摘Baoxinggou area is located in northern Daxing'anling. In this area,comprehensive use of geophysical and geochemical exploration methods plays an important role in the prospecting,and has yielded some application results so far. Based on the 1 /100 000 stream sediment anomaly survey,the methods of 1 /20 000 soil geochemical measurement,trenching engineering on the earth's surface and 1 /10 000 IP intermediate gradient survey were all used to verify and decompose drainage anomalies,as well as to find and locate ore bodies. In this way,an effective,economical and quick prospecting method was concluded,which focuses on the middle and lower mountain forest swamp landscape in the northern part of Daxing'anling,and provides reference for the prospecting in the area.
基金supported by National Natural Science Foundatoin of China(81222042)National Basic Research Program of China(2009CB918404,2012CB518001)
文摘Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties.Recently,benzoxaboroles were widely applied as antifungal,antibacterial,antiviral,anti-parasite,and anti-inflammatory agents.This review covers the properties,synthetic methods and applications of benzoxaboroles in medicinal chemistry.
基金supported by the National Natural Science Foundation of China(61376068,11304132,11304133 and11504147)the Fundamental Research Funds for the Central Universities(lzujbky-2017-178 and lzujbky-2017-181)。
文摘In this paper,we report a high-performance selfsupported supercapacitor electrode composed of a cracked bark-shaped Ni-Co-Mn ternary metallic sulfide(NiCoMnS4)nanostructure on carbon cloth prepared by a simple one-step hydrothermal process and subsequent electrochemical treatment.The electrode delivers a high specific discharge capacity of up to 2470.4 F g^(-1) at 1 A g^(-1) and high rate performances of1635.6 F g^(-1) at 10 A g^(-1) and 910.2 F g^(-1) even at 32 A g^(-1).Cycling tests indicate that NiCoMnS_(4) could maintain >91.1% of its initial capacity and nearly 100% Coulombic efficiency over10,000 cycles at 8 A g^(-1).An aqueous asymmetric supercapacitor assembled with NiCoMnS_(4) as the cathode,activated carbon as the anode,and 1 mol L^(-1) KOH as the electrolyte delivers an energy density of 68.2 W h kg^(-1)at 850.1 W kg^(-1) and capacity retention of 92.5% after 10,000 cycles at 4 A g^(-1).Given the excellent performance and simple material preparation of our proposed device,this study provides a valuable foundation for the development of self-supported metallic sulfide-based electrodes with high electrochemical properties for potential application in aqueous asymmetric supercapacitors.