The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from Ti...The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.展开更多
A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substitutin...A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.展开更多
Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for...Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.展开更多
Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quan...Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quantum efficiency of freshly prepared PbS QDs (7%-11%) remained higher than 5% upon aging for three weeks when the nanocrystals (NCs) were stored in an ice-bath in the dark, and higher than 5%for at least five weeks when extra DTG ligands were introduced into the nanocrystal solution followed by stirring every two weeks. Poly(N-isopropyl acrylamide) (PNIPAM) microgels were produced via precipitation polymerization with dimensions of ca. 230 nm and polydispersity of 3-5%. Incorporation of PbS QDs into PNIPAM microgels indicated that PbS can be incorporated into the interior of microgel particles and not at the microgel interface. The combination of reasonable room temperature quantum efficiency and strong, efficient luminescence covering the 1.3-1.55 μm telecommunication window makes these nanoparticles promising materials in optical devices and telecommunications.展开更多
It was generally considered that contamination of the gel type polystyrenestrong basic anion exchange resin by organic matter in natural water is the result ofion exchange and Van der waal's adsorption on it. On t...It was generally considered that contamination of the gel type polystyrenestrong basic anion exchange resin by organic matter in natural water is the result ofion exchange and Van der waal's adsorption on it. On the basis of laboratory and industrial experiments, this paper confirmed that the interreaction between organicmatter and resin polymer matrix is primarily controled by a Van der waal's adsorption.展开更多
A series of phosphine oxide-functionalized polyfluorene derivatives,PFH-PO-40-1 (P1),PFH-PO-20-1 (P2),PFH-PO-10-1 (P3),and PFH-PO-1-1 (P4),were prepared via a palladium-mediated Suzuki cross-coupling reaction.The stru...A series of phosphine oxide-functionalized polyfluorene derivatives,PFH-PO-40-1 (P1),PFH-PO-20-1 (P2),PFH-PO-10-1 (P3),and PFH-PO-1-1 (P4),were prepared via a palladium-mediated Suzuki cross-coupling reaction.The structures and purities of all polymers were fully characterized by 1H and 13C NMR,UV-vis and photoluminescent spectroscopy,gel permeation chromatography,and TGA/DSC.Their emission features showed single broad peaks at about 445 nm in film,compared with those in dilute solutions,which might be caused by some degree of aggregation in the excited states of the backbones.The best electroluminescence (EL) performance of these polymers with configuration of ITO/PEDOT:PSS/Polymer/Alq3/LiF/Al was obtained from P1 (current efficiency was 4.2 Cd/A at 6V).展开更多
To correct the defects of hydrophobic association hydrogels (HA-gels), new physically and chemically cross-linked hybrid hy- drophobic association hydrogels (hybrid HA-gels) were prepared by radical copolymerizati...To correct the defects of hydrophobic association hydrogels (HA-gels), new physically and chemically cross-linked hybrid hy- drophobic association hydrogels (hybrid HA-gels) were prepared by radical copolymerization of acrylamide (AM), octylphe- nol polyoxyethylene (n) acrylate (OPnAC, n stands for the number of ethoxy group, and is 10 and 21) and N,N'-methylene- bisacrylamide (MBA). On the basis of the statistical molecular theory of rubber elastic, the Mooney-Rivlin model and using the tensile true stress (O'true) tested at room temperature, the number of network strands per unit volume (o~) and the num- ber-average molar mass of a network strand (Me) were evaluated for hybrid HA-gels. For the hydrogels, the effect of the con- tent of MBA and OP10AC on their tensile mechanical properties was studied by using o0 and Mc; also, the effect of the com- positions and temperature on their swelling behavior in distilled water was discussed in detail. In addition, hybrid HA-gels in- cluding a small quantity of MBA possessed the capabilities of secondary self-healing and remolding. In contrast with HA-gels prepared by the same compositions besides MBA, hybrid HA-gels showed good mechanical strength and long-term thermal stability in distilled water in the range of 25 to 80℃. Furthemore, hybrid HA-gels also avoided the self-deswelling behavior of HA-gels. The results show that the application fields of HA-gels will be greatly broadened after introducing a chemical cross-linking network.展开更多
文摘The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.
文摘A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.
文摘Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.
基金NSFC(No.50543007)Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry)+1 种基金NSF of Guangdong Province (No.07006838)Tianhe Bureau of Sci. & Techno., Guangzhou.
文摘Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quantum efficiency of freshly prepared PbS QDs (7%-11%) remained higher than 5% upon aging for three weeks when the nanocrystals (NCs) were stored in an ice-bath in the dark, and higher than 5%for at least five weeks when extra DTG ligands were introduced into the nanocrystal solution followed by stirring every two weeks. Poly(N-isopropyl acrylamide) (PNIPAM) microgels were produced via precipitation polymerization with dimensions of ca. 230 nm and polydispersity of 3-5%. Incorporation of PbS QDs into PNIPAM microgels indicated that PbS can be incorporated into the interior of microgel particles and not at the microgel interface. The combination of reasonable room temperature quantum efficiency and strong, efficient luminescence covering the 1.3-1.55 μm telecommunication window makes these nanoparticles promising materials in optical devices and telecommunications.
文摘It was generally considered that contamination of the gel type polystyrenestrong basic anion exchange resin by organic matter in natural water is the result ofion exchange and Van der waal's adsorption on it. On the basis of laboratory and industrial experiments, this paper confirmed that the interreaction between organicmatter and resin polymer matrix is primarily controled by a Van der waal's adsorption.
基金supported by the National Basic Research Program of China (2006CB921602 and 2009CB623601)National Natural Science Foundation of China,and Hewlett Packard Company
文摘A series of phosphine oxide-functionalized polyfluorene derivatives,PFH-PO-40-1 (P1),PFH-PO-20-1 (P2),PFH-PO-10-1 (P3),and PFH-PO-1-1 (P4),were prepared via a palladium-mediated Suzuki cross-coupling reaction.The structures and purities of all polymers were fully characterized by 1H and 13C NMR,UV-vis and photoluminescent spectroscopy,gel permeation chromatography,and TGA/DSC.Their emission features showed single broad peaks at about 445 nm in film,compared with those in dilute solutions,which might be caused by some degree of aggregation in the excited states of the backbones.The best electroluminescence (EL) performance of these polymers with configuration of ITO/PEDOT:PSS/Polymer/Alq3/LiF/Al was obtained from P1 (current efficiency was 4.2 Cd/A at 6V).
文摘To correct the defects of hydrophobic association hydrogels (HA-gels), new physically and chemically cross-linked hybrid hy- drophobic association hydrogels (hybrid HA-gels) were prepared by radical copolymerization of acrylamide (AM), octylphe- nol polyoxyethylene (n) acrylate (OPnAC, n stands for the number of ethoxy group, and is 10 and 21) and N,N'-methylene- bisacrylamide (MBA). On the basis of the statistical molecular theory of rubber elastic, the Mooney-Rivlin model and using the tensile true stress (O'true) tested at room temperature, the number of network strands per unit volume (o~) and the num- ber-average molar mass of a network strand (Me) were evaluated for hybrid HA-gels. For the hydrogels, the effect of the con- tent of MBA and OP10AC on their tensile mechanical properties was studied by using o0 and Mc; also, the effect of the com- positions and temperature on their swelling behavior in distilled water was discussed in detail. In addition, hybrid HA-gels in- cluding a small quantity of MBA possessed the capabilities of secondary self-healing and remolding. In contrast with HA-gels prepared by the same compositions besides MBA, hybrid HA-gels showed good mechanical strength and long-term thermal stability in distilled water in the range of 25 to 80℃. Furthemore, hybrid HA-gels also avoided the self-deswelling behavior of HA-gels. The results show that the application fields of HA-gels will be greatly broadened after introducing a chemical cross-linking network.