The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of...The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.展开更多
基金The project supported by National Natural Science Foundation of China and partly by the Science Foundation of Shandong Province of China
文摘The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.