The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlin...The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.展开更多
Aim To investigate novel bioactive and structural metabolites from marineorganisms. Methods Column chromatography in association with semi-preparative HPLC were used for theisolation of compounds. 1D and 2D NMR, IR, U...Aim To investigate novel bioactive and structural metabolites from marineorganisms. Methods Column chromatography in association with semi-preparative HPLC were used for theisolation of compounds. 1D and 2D NMR, IR, UV, and MS were employed for structure elucidation.Results From the butanol fraction of the 95% EtOH extract of the starfish Asterias rollestoni, a newcompound N^7 -2'-deoxypseudoxanthosine (1), along with sixteen known compounds, 2'-0-methyl-inosine(2), 2'-deoxyinosine (3), 2'-0-methylguanosine (4), inosine (5); thymine (6), uracil (7), thymidine(8), deoxyuridine (9), 2'-0-methyluridine (10), ( ― )-(1S, 3S)-1-methyl-1, 2, 3,4-terrahydro-β-carboline-3-carboxyl-ic acid (11), ( ― )-(1R, 3S)-1-methyl-1, 2, 3,4-tetrahydro-β-carboline-3-carboxylic acid (12) , ( ― )-(3S)- 1, 2, 3,4-tetrahydro-β-carboline-3-carboxylic acid (13), L-tryptophan (14), L-phenylalanine (15), 3-carboxyindole (16), and p-hydroxybenzoic acid (17) , have been isolated. Conclusion Compound 1 is a newnatural product, and compounds 8, 9 and 10 are isolated from natural sources for the first time, andthe known compounds except 14 and 15 are first reported from starfish Asterias rollestoni.展开更多
The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine...[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.展开更多
The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristi...The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristics of soil fertility of C. chengiana and to compare and investigate differences of soil fertility for six C. chengiana populations and their relationships with vegetation, climate and disturbance. The results of the study at 0-20 cm soil depth showed that 1) significant differences (P < 0.05) existed among populations for soil bulk density, soil total porosity, capillary porosity, maximum water-holding capacity, capillary water-holding capacity and topsoil natural water content; 2) chemical characteristics of soil organic matter, total N, total P, alkali-hydrolyzable N, available P, available K and cation exchange capacity were significantly different among the populations; and 3) based on the significant effect of soil fertility factors on forest growth, soil physical and chemical characteristics could be selected as an integrated fertility index (IFI) for evaluation of different C. chengiana populations. Principal component and cluster analyses showed significant differences probably due to the difference of vegetation conditions, management measurements, human-induced disturbances and environmental factors. In order to protect the soil ecological functions in fragile ecological regions, C. chengiana could be used in programs enclosing the hill for natural afforestation, natural forest protection programs, and programs replacing agriculture with afforestation measures.展开更多
α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decrease...α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.展开更多
Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperatu...Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.展开更多
A study on the effect of applied magnetic field was performed with six types of soils collected fromnortheastern China. Magnetic field was found to cause changes of soil physicc-chemical properties and soilenzyme acti...A study on the effect of applied magnetic field was performed with six types of soils collected fromnortheastern China. Magnetic field was found to cause changes of soil physicc-chemical properties and soilenzyme activities. An appropriate applied magnetic field could cut down soil zeta-potential, soil specificsurface, soil water potential and soil swelling capacity; raise the charge density on soil colloids and theactivities of invertase, hydrogen peroxidase and amylase in the soils; enhance soil aggregation and improvesoil structural status and soil water-releasing capability.展开更多
The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism an...The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.展开更多
Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η)...Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η),and density(ρ)of the DMI−ZnCl_(2)solvated ionic liquid at various temperatures(T)were measured and fitted.Furthermore,cyclic voltammetry was used to study the electrochemical behavior of Zn(II)in the DMI−ZnCl_(2)solvated ionic liquid,indicating that the reduction of Zn(II)on the tungsten electrode was a one-step two-electron transfer irreversible process.XRD and SEM−EDS analysis of the cathode product confirmed that the deposited coating was metallic zinc.Finally,the effects of deposition potential,temperature and duration on the morphology of zinc coatings were investigated.The results showed that a dense and uniform zinc coating was obtained by potentiostatic electrodeposition at−2 V(vs Pt)and 353 K for 1 h.展开更多
Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive ...Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craflwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6-1:1:8 with mass fraction of solid materials 60%-63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7 × 10^6 yuan (RMB), only 1/10 of that of traditional paste backfill system.展开更多
An understanding of the physical,chemical,and biological properties of a soil provides a basis for soil use and management.This paper reports the major physico-chemical properties and enzyme activities of the soils of...An understanding of the physical,chemical,and biological properties of a soil provides a basis for soil use and management.This paper reports the major physico-chemical properties and enzyme activities of the soils of Lhasa's main arable lands and the factors that influence these soil properties.Composite and core samples were taken from the three main arable soil types(alluvial soil,subalpine arable steppe soil,and subalpine arable meadow soil) and were analysed using standard methods.The bulk density and the ventilation porosity ratio of the soils were close to the recommended values for arable lands,and the dominant soil texture was sandy.The soil moisture release rates were arable steppe soil > alluvial soil > arable meadow soil.Soil organic matter content,Cation-Exchange Capacity(CEC),total and available nitrogen content,and catalase activity of the arable meadow soil were higher than those of the alluvial and the arable steppe soils,while soil pH in the arable meadow was lower.Most of the measured properties did not show a significant variance among these three soils.However,the measured indices(apart from the total potassium) indicate that there are notable differences among the three types of soil.The results implied that the utilisation patterns of the arable soil or human activities,such as tillage practices and fertiliser applications,have a substantialeffect on the soil properties in this region.Our results suggest that the cultivation practices in the region have apparently positive impact on the soil organic matter,nutrient contents and bulk density probably due to the sound fertiliser management such as the applications of farmyard manure and chemical fertilisers.However,intense cultivation practices lowered the activity of most soil enzymes.The results demonstrate that the choice of soil management strategy had a significant impact on the soil physicochemical and biological properties in the region studied.展开更多
1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as e...1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.展开更多
文摘The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.
文摘Aim To investigate novel bioactive and structural metabolites from marineorganisms. Methods Column chromatography in association with semi-preparative HPLC were used for theisolation of compounds. 1D and 2D NMR, IR, UV, and MS were employed for structure elucidation.Results From the butanol fraction of the 95% EtOH extract of the starfish Asterias rollestoni, a newcompound N^7 -2'-deoxypseudoxanthosine (1), along with sixteen known compounds, 2'-0-methyl-inosine(2), 2'-deoxyinosine (3), 2'-0-methylguanosine (4), inosine (5); thymine (6), uracil (7), thymidine(8), deoxyuridine (9), 2'-0-methyluridine (10), ( ― )-(1S, 3S)-1-methyl-1, 2, 3,4-terrahydro-β-carboline-3-carboxyl-ic acid (11), ( ― )-(1R, 3S)-1-methyl-1, 2, 3,4-tetrahydro-β-carboline-3-carboxylic acid (12) , ( ― )-(3S)- 1, 2, 3,4-tetrahydro-β-carboline-3-carboxylic acid (13), L-tryptophan (14), L-phenylalanine (15), 3-carboxyindole (16), and p-hydroxybenzoic acid (17) , have been isolated. Conclusion Compound 1 is a newnatural product, and compounds 8, 9 and 10 are isolated from natural sources for the first time, andthe known compounds except 14 and 15 are first reported from starfish Asterias rollestoni.
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.
文摘[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos. KZCX3-SW-339-05KSCX2-SW-104 KSCX1-07-02)the Talent Plan of the Chinese Academy of Sciences.
文摘The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristics of soil fertility of C. chengiana and to compare and investigate differences of soil fertility for six C. chengiana populations and their relationships with vegetation, climate and disturbance. The results of the study at 0-20 cm soil depth showed that 1) significant differences (P < 0.05) existed among populations for soil bulk density, soil total porosity, capillary porosity, maximum water-holding capacity, capillary water-holding capacity and topsoil natural water content; 2) chemical characteristics of soil organic matter, total N, total P, alkali-hydrolyzable N, available P, available K and cation exchange capacity were significantly different among the populations; and 3) based on the significant effect of soil fertility factors on forest growth, soil physical and chemical characteristics could be selected as an integrated fertility index (IFI) for evaluation of different C. chengiana populations. Principal component and cluster analyses showed significant differences probably due to the difference of vegetation conditions, management measurements, human-induced disturbances and environmental factors. In order to protect the soil ecological functions in fragile ecological regions, C. chengiana could be used in programs enclosing the hill for natural afforestation, natural forest protection programs, and programs replacing agriculture with afforestation measures.
基金supported by the National Natural Science Foundation of China(51502221)~~
文摘α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.
文摘A study on the effect of applied magnetic field was performed with six types of soils collected fromnortheastern China. Magnetic field was found to cause changes of soil physicc-chemical properties and soilenzyme activities. An appropriate applied magnetic field could cut down soil zeta-potential, soil specificsurface, soil water potential and soil swelling capacity; raise the charge density on soil colloids and theactivities of invertase, hydrogen peroxidase and amylase in the soils; enhance soil aggregation and improvesoil structural status and soil water-releasing capability.
基金financial supports from the National Natural Science Foundation of China(Nos.52004062,52074084,51804070)the Natural Science Foundation of Liaoning Province of China(No.2020-MS-084)the Guangxi Innovation-Driven Development Program,China(No.GUIKE AA18118030)。
文摘The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.
基金The authors are grateful for the financial supports from the Fundamental Research Funds for the Central Universities,China(N182503033,N172502003)Postdoctoral Research Foundation of China(2018M640258)+1 种基金the National Natural Science Foundation of China(51804070)Guangxi Innovation-driven Development Program,China(GUIKE AA18118030).
文摘Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η),and density(ρ)of the DMI−ZnCl_(2)solvated ionic liquid at various temperatures(T)were measured and fitted.Furthermore,cyclic voltammetry was used to study the electrochemical behavior of Zn(II)in the DMI−ZnCl_(2)solvated ionic liquid,indicating that the reduction of Zn(II)on the tungsten electrode was a one-step two-electron transfer irreversible process.XRD and SEM−EDS analysis of the cathode product confirmed that the deposited coating was metallic zinc.Finally,the effects of deposition potential,temperature and duration on the morphology of zinc coatings were investigated.The results showed that a dense and uniform zinc coating was obtained by potentiostatic electrodeposition at−2 V(vs Pt)and 353 K for 1 h.
基金Project(2006BAB02A03)supported by the National Key Technology Research and Development ProgramProject(08MX16)supported by Mittal Scientific and Technological Innovation Projects of Central South University during 2008
文摘Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craflwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6-1:1:8 with mass fraction of solid materials 60%-63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7 × 10^6 yuan (RMB), only 1/10 of that of traditional paste backfill system.
基金"strategic priority research program - climate change: carbon budget and related issues" of the Chinese Academy of Sciences(Grant No.XDA05050506)the One Hundred Young Persons Project of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences(Grant No.SDSQB2010-02)
文摘An understanding of the physical,chemical,and biological properties of a soil provides a basis for soil use and management.This paper reports the major physico-chemical properties and enzyme activities of the soils of Lhasa's main arable lands and the factors that influence these soil properties.Composite and core samples were taken from the three main arable soil types(alluvial soil,subalpine arable steppe soil,and subalpine arable meadow soil) and were analysed using standard methods.The bulk density and the ventilation porosity ratio of the soils were close to the recommended values for arable lands,and the dominant soil texture was sandy.The soil moisture release rates were arable steppe soil > alluvial soil > arable meadow soil.Soil organic matter content,Cation-Exchange Capacity(CEC),total and available nitrogen content,and catalase activity of the arable meadow soil were higher than those of the alluvial and the arable steppe soils,while soil pH in the arable meadow was lower.Most of the measured properties did not show a significant variance among these three soils.However,the measured indices(apart from the total potassium) indicate that there are notable differences among the three types of soil.The results implied that the utilisation patterns of the arable soil or human activities,such as tillage practices and fertiliser applications,have a substantialeffect on the soil properties in this region.Our results suggest that the cultivation practices in the region have apparently positive impact on the soil organic matter,nutrient contents and bulk density probably due to the sound fertiliser management such as the applications of farmyard manure and chemical fertilisers.However,intense cultivation practices lowered the activity of most soil enzymes.The results demonstrate that the choice of soil management strategy had a significant impact on the soil physicochemical and biological properties in the region studied.
基金Project(50574031) supported by the National Natural Science Foundation of China
文摘1-butyl-3-methylimidazolium perchlorate([BMIM]ClO4) was synthesized by two steps with N-methylimidazolium.Some physico-chemical properties,such as density,surface tension,viscosity,electrical conductivity as well as electrochemical window,were investigated and solvent performance was also studied.The results show that this kind of ionic liquid is an excellent electrolyte with low viscosity,high electrical conductivity and wide electrochemical window.In addition,[BMIM]ClO4 is soluble in most conventional solvents and some metal oxides have high solubility in it,which lays the foundation of direct electrolysis of metal oxides in this ionic liquid.