期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
斜视条件下机载InSAR基线分析及定标法
1
作者 曾友兵 洪峻 王宇 《电子测量技术》 2016年第9期45-50,共6页
干涉参数定标对机载InSAR系统获取高精度数字高程模型具有重要的意义。物理基线长度是干涉定标需标定的重要参数之一。在斜视条件下,有效干涉基线不等同于物理基线,并且受到载机姿态角的影响。传统的干涉定标方法直接利用InSAR高程反演... 干涉参数定标对机载InSAR系统获取高精度数字高程模型具有重要的意义。物理基线长度是干涉定标需标定的重要参数之一。在斜视条件下,有效干涉基线不等同于物理基线,并且受到载机姿态角的影响。传统的干涉定标方法直接利用InSAR高程反演模型对干涉基线的偏导构建敏感度方程,其标定的基线参数为有效干涉基线,而非实际的物理基线。针对该问题,对斜视条件下的有效干涉基线进行了分析,建立了有效干涉基线与物理基线和载机姿态角之间的关系,并提出了针对实际物理基线的定标方法。最后,利用中国科学院电子学研究所X波段机载InSAR获取的实际数据进行了外定标处理实验,验证了该方法的有效性。 展开更多
关键词 机载InSAR系统 干涉定标 有效干涉基线 物理基线
下载PDF
Calculations of rock matrix modulus based on a linear regression relation 被引量:5
2
作者 贺锡雷 贺振华 +2 位作者 汪瑞良 王绪本 蒋炼 《Applied Geophysics》 SCIE CSCD 2011年第3期155-162,239,共9页
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura... The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable. 展开更多
关键词 Bulk modulus rock matrix fluid substitution rock physics linear regression
下载PDF
KBM method based on the homotopy analysis 被引量:1
3
作者 LIU YanBin CHEN YuShu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第6期1137-1140,共4页
The KBM method is effective in solving nonlinear problems.Unfortunately,the traditional KBM method strongly depends on a small parameter,which does not exist in most of the practice physical systems.Therefore this met... The KBM method is effective in solving nonlinear problems.Unfortunately,the traditional KBM method strongly depends on a small parameter,which does not exist in most of the practice physical systems.Therefore this method is limited to dealing with the system with strong nonlinearity.In this paper we present a procedure to study the resonance solutions of the system with strong nonlinearities by employing the homotopy analysis technique to extend the KBM method to the strong nonlinear systems,and we also analyze the truncation error of the procedure.Applied to a given example,the procedure shows the efficiencies in studying bifurcation. 展开更多
关键词 HOMOTOPY KBM method truncation error BIFURCATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部