The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential mode...The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.展开更多
A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles im...A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.展开更多
In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The eff...In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The effects of electron-donating and-withdrawing substituent on the electronic and optical properties have been investigated by using density functional theory(DFT)and time-dependent DFT(TD-DFT)approaches systematically.It turned out that electron-donating and-withdrawing groups can tune effectively the frontier molecular orbital(FMO)energy level,energy gap,and absorption and fluorescence spectra.The introduction of electron-withdrawing groups for the parent molecule HBDPP(2,5-bis(diphenylboryl)-3,6-bis(pyridin-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione)favors the decrease for the FMO energy(E_(LUMO)and E_(HOMO)),HOMO-LUMO gaps(E_(g)),and the downhill energetic driving force(ΔEL-L),while the electron-donating groups can increase E_(LUMO),E_(HOMO),E_(g),andΔEL-L compared with that of HBDPP,respectively.The absorption and fluorescence spectra of the electron-withdrawing substituted derivatives exhibit bathochromic shifts,while the absorption and fluorescence spectra of the electrondonating substituted derivatives show hypsochromic shifts compared with the parent molecule HBDPP,respectively.Furthermore,the stronger the electron-withdrawing/donating ability of group is,the more significant the effect in the optoelectronic properties.展开更多
The interaction between radionuclides and solid/water interfaces is important to understand the physicochemical processes of radionuclides in the natural environment.Herein,the interaction of 60Co(Ⅱ) with TiO 2 in aq...The interaction between radionuclides and solid/water interfaces is important to understand the physicochemical processes of radionuclides in the natural environment.Herein,the interaction of 60Co(Ⅱ) with TiO 2 in aqueous solution as a function of pH and ionic strength was studied by using batch technique combined with surface complexation model and density functional theory(DFT) calculations.The batch experimental results showed that the adsorption of 60Co(Ⅱ) was dependent on pH and independent of ionic strength,indicating the formation of inner-sphere surface complexes on TiO 2 surfaces.The results of surface complexation models and DFT calculations indicated that the surface species of 60Co(Ⅱ) adsorbed on TiO 2 followed the trend:B structure(i.e.,60Co(Ⅱ) was linked to one bridge oxygen site) was the dominant surface species at low pH,and TT structure(i.e.,60Co(Ⅱ) was linked to two terminal oxygen sites) became the important surface complex at neutral and alkaline pH values.These results demonstrated that a multi-technique approach could lead to definitive information on the structures of adsorbed 60Co(Ⅱ) at the molecular level at the TiO 2 /water interfaces,as well as realistic models to rationalize and accurately evaluate the macroscopic manifestations of radionuclide adsorption phenomena.展开更多
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence model...Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.展开更多
We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theor...We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theory with a generalized gradient approximation. We found that the impurity B atoms can either replace Ni atoms or Al atoms or both, depending on the surround- ing environment. We demonstrated that the presence of B will cause an increase in brittleness and a decrease in the ductility of NiAI for the Al-substitutional case, while causing an increase in the ductility of NiAl for the Ni-subtitutional case, based on the calculated elastic constants and the empirical criterions. This indicates that the effects of B impurities on the mechanical prop- erties of NiAl intermetallics are quite composition-dependent.展开更多
Cl-containing cerium dioxide(Ce O2) catalysts have been found to exhibit unique catalytic activities. In the present work, using density functional theory calculations with the inclusion of on-site Coulomb correction,...Cl-containing cerium dioxide(Ce O2) catalysts have been found to exhibit unique catalytic activities. In the present work, using density functional theory calculations with the inclusion of on-site Coulomb correction, we systematically studied the effect of Cl on the physicochemical properties of Ce O2 surfaces by substituting one subsurface O with Cl. The calculated results show that substituting an O atom with a Cl atom results in structural distortion and the reduction of one surface Ce4+ cation to Ce3+. The protruding Ce3+ cation greatly improves the adsorption energy of O2 to produce an active O2- species, and maintains the catalytic oxidation cycle of CO on Ce O2(110). These results may help us obtain a better understanding of Cl-ceria interacting systems and provide some guidance for the design of effective Ce O2-based catalysts.展开更多
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependen...The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence(IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.展开更多
Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-...Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.展开更多
This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch...This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis. The existence, as well as the stability of possible equilibria, is carried out. Bionomic equilibrium of the system is determined and optimal harvest policy is studied with the help of Pontryagin's maximum principle. The key results developed in this paper are illustrated using numer- ical simulations. Our results indicate that dynamic behavior of the system very much depends on the prey refuge parameter and increasing amount of refuge could increase prey density and may lead to the extinction of predator population density.展开更多
This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and w...This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and wheat-straw with different ratios and different shape forms were used as furnishes; UF and MDI were added to the poplar furnish and wheat-straw one, respectively. The experiment results showed that the layer-forming boards were superior to the mixture-forming boards. Under the given experimental conditions, the poplar to wheat straw ratio has no obvious influence on the mechanical properties, but has significant influence on the thickness swell (TS) of PB and MDF.展开更多
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.
文摘The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.
文摘A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.
基金the National Natural Science Foundation of China(21563002)the Natural Science Foundation of Inner Mongolia Autonomous Region(2021LHMS02001)the Research Program of Sciences at Universities of Inner Mongolia Autonomous Region(NJZY21175)
文摘In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The effects of electron-donating and-withdrawing substituent on the electronic and optical properties have been investigated by using density functional theory(DFT)and time-dependent DFT(TD-DFT)approaches systematically.It turned out that electron-donating and-withdrawing groups can tune effectively the frontier molecular orbital(FMO)energy level,energy gap,and absorption and fluorescence spectra.The introduction of electron-withdrawing groups for the parent molecule HBDPP(2,5-bis(diphenylboryl)-3,6-bis(pyridin-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione)favors the decrease for the FMO energy(E_(LUMO)and E_(HOMO)),HOMO-LUMO gaps(E_(g)),and the downhill energetic driving force(ΔEL-L),while the electron-donating groups can increase E_(LUMO),E_(HOMO),E_(g),andΔEL-L compared with that of HBDPP,respectively.The absorption and fluorescence spectra of the electron-withdrawing substituted derivatives exhibit bathochromic shifts,while the absorption and fluorescence spectra of the electrondonating substituted derivatives show hypsochromic shifts compared with the parent molecule HBDPP,respectively.Furthermore,the stronger the electron-withdrawing/donating ability of group is,the more significant the effect in the optoelectronic properties.
基金Progress of Projects Supported by NSFCsupported by the National Basic Research Program of China (2011CB933700)the National Natural Science Foundation of China (20907055,20971126,21071147,91126020,21077107)
文摘The interaction between radionuclides and solid/water interfaces is important to understand the physicochemical processes of radionuclides in the natural environment.Herein,the interaction of 60Co(Ⅱ) with TiO 2 in aqueous solution as a function of pH and ionic strength was studied by using batch technique combined with surface complexation model and density functional theory(DFT) calculations.The batch experimental results showed that the adsorption of 60Co(Ⅱ) was dependent on pH and independent of ionic strength,indicating the formation of inner-sphere surface complexes on TiO 2 surfaces.The results of surface complexation models and DFT calculations indicated that the surface species of 60Co(Ⅱ) adsorbed on TiO 2 followed the trend:B structure(i.e.,60Co(Ⅱ) was linked to one bridge oxygen site) was the dominant surface species at low pH,and TT structure(i.e.,60Co(Ⅱ) was linked to two terminal oxygen sites) became the important surface complex at neutral and alkaline pH values.These results demonstrated that a multi-technique approach could lead to definitive information on the structures of adsorbed 60Co(Ⅱ) at the molecular level at the TiO 2 /water interfaces,as well as realistic models to rationalize and accurately evaluate the macroscopic manifestations of radionuclide adsorption phenomena.
基金supported by the 111 Project(Grant No.B13001)by the Young Thousand Talents Program from the Organization Department of the Communist Party of China Central Committee
文摘Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
基金supported by the Basic Research Project of High Education (Grant No. ZXH2009C004)the Foundation of CAUC (Grant No. 09QD06X)
文摘We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theory with a generalized gradient approximation. We found that the impurity B atoms can either replace Ni atoms or Al atoms or both, depending on the surround- ing environment. We demonstrated that the presence of B will cause an increase in brittleness and a decrease in the ductility of NiAI for the Al-substitutional case, while causing an increase in the ductility of NiAl for the Ni-subtitutional case, based on the calculated elastic constants and the empirical criterions. This indicates that the effects of B impurities on the mechanical prop- erties of NiAl intermetallics are quite composition-dependent.
基金supported by the National Basic Research Program of China(2011CB808505)the National Natural Science Foundation of China(21322307,21421004)+1 种基金the"Shu Guang"project of Shanghai Municipal Education CommissionShanghai Education Development Foundation(13SG30)for financial support
文摘Cl-containing cerium dioxide(Ce O2) catalysts have been found to exhibit unique catalytic activities. In the present work, using density functional theory calculations with the inclusion of on-site Coulomb correction, we systematically studied the effect of Cl on the physicochemical properties of Ce O2 surfaces by substituting one subsurface O with Cl. The calculated results show that substituting an O atom with a Cl atom results in structural distortion and the reduction of one surface Ce4+ cation to Ce3+. The protruding Ce3+ cation greatly improves the adsorption energy of O2 to produce an active O2- species, and maintains the catalytic oxidation cycle of CO on Ce O2(110). These results may help us obtain a better understanding of Cl-ceria interacting systems and provide some guidance for the design of effective Ce O2-based catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.11475071,and 11547308)the Seeds Funding of Jilin University
文摘The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence(IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
基金supported by the National Basic Research Program of China(2012CB932902,2011CB933700)the National Natural Science Foundation of China(21321062,21061120456)+1 种基金the Natural Science Foundation of Fujian Province of China(2012J06004)the Program for New Century Excellent Talents in University(NCET-12-0318)
文摘Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.
文摘This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis. The existence, as well as the stability of possible equilibria, is carried out. Bionomic equilibrium of the system is determined and optimal harvest policy is studied with the help of Pontryagin's maximum principle. The key results developed in this paper are illustrated using numer- ical simulations. Our results indicate that dynamic behavior of the system very much depends on the prey refuge parameter and increasing amount of refuge could increase prey density and may lead to the extinction of predator population density.
文摘This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and wheat-straw with different ratios and different shape forms were used as furnishes; UF and MDI were added to the poplar furnish and wheat-straw one, respectively. The experiment results showed that the layer-forming boards were superior to the mixture-forming boards. Under the given experimental conditions, the poplar to wheat straw ratio has no obvious influence on the mechanical properties, but has significant influence on the thickness swell (TS) of PB and MDF.