With the global promotion of LED lighting products, the health and safety of LED products has drawn wider attention. This paper systematically introduces the ergonomic evaluation (methods and indicators) svstem for ...With the global promotion of LED lighting products, the health and safety of LED products has drawn wider attention. This paper systematically introduces the ergonomic evaluation (methods and indicators) svstem for heahh and comfort which differs from the traditional manpowered physical detection, and sketches out the evaluation indicators and its industrialization prospect.展开更多
Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich t...Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.展开更多
Many studies have shown that either the nearby astrophysical source or dark matter (DM) annihilation/decay can be used to explain the excess of high energy cosmic ray (CR) e^±which is detected by many experim...Many studies have shown that either the nearby astrophysical source or dark matter (DM) annihilation/decay can be used to explain the excess of high energy cosmic ray (CR) e^±which is detected by many experiments, such as PAMELA and AMS-02. Recently, the dark matter particle explorer (DAMPE) collaboration has reported its first result of the total CR e^± spectrum from 25 GeV to 4.6TeV with high precision. In this work, we study the DM annihilation and pulsar interpretations of this result. We show that the leptonic DM annihilation channels to r+'/"-, 4p, 4"/', and mixed charged lepton final states can well explain the DAMPE e^± spectrum. We also find that the mixed charged leptons channel would lead to a sharp drop structure at - TeV. However, the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB, unless some exotic DM models are introduced. In the pulsar scenario, we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e^± spectrum. Involving the constraint from the Fermi-LAT observation of the e^± anisotropy, we find that two pulsars could explain the DAMPE e^± spectrum. Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e^± with the current DAMPE result.展开更多
Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. Howe...Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. However, quantitative analyses of the links between PM10 and oxidative damage are limited. In this study, plasmid DNA assay and ICP-MS were applied to study oxidative capacity and trace element compositions, respectively, of summer and winter PM10 samples collected at several sites (Sun Yat Sen Municipal Park (SYSP) and Av. de Horta e Costa (AHC) on the Macao peninsula and Macao University on Tai- pa Island (TI)) in Macao. At AHC and TI, the oxidative capacity of PM10 collected in winter was higher than that collected in summer, for both the whole sample and the water-soluble fraction. In contrast, no seasonal variation was noted at SYSP. PMI0 exhibited the highest oxidative capacity at SYSP and lowest oxidative capacity at TI in both seasons, demonstrating that the PMl0 collected on the Macao peninsula had a higher toxicity than that from Taipa Island. ICP-MS analyses revealed that the concentrations of total analyzed trace elements and their water-soluble components in PMI0 from TI and AHC were higher in winter than in summer, whereas SYSP displayed the opposite trend. The extents of oxidative damage induced by the wa- ter-soluble fractions and intact whole particles were generally similar, implying that the oxidative damage caused by particles in Macao resulted mainly from the water-soluble fraction. The oxidative capacities of PM10 were positively correlated with both whole and soluble Zn at the 95% confidence level, indicating that Zn was the major element responsible for the oxidative damage caused by particles in Macao. Other heavy metals, such as Cr, Cu, Cd, Ni, As, and Pb, also exhibited elevated concen- trations, and the potential health impacts of these metals should be considered.展开更多
Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a...Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.展开更多
文摘With the global promotion of LED lighting products, the health and safety of LED products has drawn wider attention. This paper systematically introduces the ergonomic evaluation (methods and indicators) svstem for heahh and comfort which differs from the traditional manpowered physical detection, and sketches out the evaluation indicators and its industrialization prospect.
基金financially supported by the National Program on Key Basic Research Project(2018YFA0305604 and 2017YFA0303302)National Natural Science Foundation of China(11774008,381/0401210001)+2 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201703)China Postdoctoral Science Foundation(130/0401130005)
文摘Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.
基金supported by the National Key Program for Research and Development(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grant Nos.U1738209,11475189,and 11475191)
文摘Many studies have shown that either the nearby astrophysical source or dark matter (DM) annihilation/decay can be used to explain the excess of high energy cosmic ray (CR) e^±which is detected by many experiments, such as PAMELA and AMS-02. Recently, the dark matter particle explorer (DAMPE) collaboration has reported its first result of the total CR e^± spectrum from 25 GeV to 4.6TeV with high precision. In this work, we study the DM annihilation and pulsar interpretations of this result. We show that the leptonic DM annihilation channels to r+'/"-, 4p, 4"/', and mixed charged lepton final states can well explain the DAMPE e^± spectrum. We also find that the mixed charged leptons channel would lead to a sharp drop structure at - TeV. However, the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB, unless some exotic DM models are introduced. In the pulsar scenario, we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e^± spectrum. Involving the constraint from the Fermi-LAT observation of the e^± anisotropy, we find that two pulsars could explain the DAMPE e^± spectrum. Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e^± with the current DAMPE result.
基金supported by the National Natural Science Foundation of China (Grant No. 41030213)the Macao Foundation for Development of Science and Technology (Grant No. 023/2006/A)
文摘Oxidative damage to plasmid DNA induced by airborne PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) is caused by the bioavailable (i.e., soluble) heavy metals on the particle surface. However, quantitative analyses of the links between PM10 and oxidative damage are limited. In this study, plasmid DNA assay and ICP-MS were applied to study oxidative capacity and trace element compositions, respectively, of summer and winter PM10 samples collected at several sites (Sun Yat Sen Municipal Park (SYSP) and Av. de Horta e Costa (AHC) on the Macao peninsula and Macao University on Tai- pa Island (TI)) in Macao. At AHC and TI, the oxidative capacity of PM10 collected in winter was higher than that collected in summer, for both the whole sample and the water-soluble fraction. In contrast, no seasonal variation was noted at SYSP. PMI0 exhibited the highest oxidative capacity at SYSP and lowest oxidative capacity at TI in both seasons, demonstrating that the PMl0 collected on the Macao peninsula had a higher toxicity than that from Taipa Island. ICP-MS analyses revealed that the concentrations of total analyzed trace elements and their water-soluble components in PMI0 from TI and AHC were higher in winter than in summer, whereas SYSP displayed the opposite trend. The extents of oxidative damage induced by the wa- ter-soluble fractions and intact whole particles were generally similar, implying that the oxidative damage caused by particles in Macao resulted mainly from the water-soluble fraction. The oxidative capacities of PM10 were positively correlated with both whole and soluble Zn at the 95% confidence level, indicating that Zn was the major element responsible for the oxidative damage caused by particles in Macao. Other heavy metals, such as Cr, Cu, Cd, Ni, As, and Pb, also exhibited elevated concen- trations, and the potential health impacts of these metals should be considered.
基金supported by the National Natural Science Foundation of China (Grant No. 40471086)the National High Technology Research and Development Program of China (Grant No. 2006AA12Z102)
文摘Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.