A comprehensive first principles study of III-Antimonide binary compounds is hardly found in literature. We report a broad study of structural and electronic properties of boron antimonide (BSb), aluminium antimoni...A comprehensive first principles study of III-Antimonide binary compounds is hardly found in literature. We report a broad study of structural and electronic properties of boron antimonide (BSb), aluminium antimonide (AlSb), gallium antimonide (GaSb) and indium antimonide (InSb) in zineblende phase based on density functional theory (DFT). Our calculations are based on Full-PotentiM Lineaxized Augmented Plane wave plus local orbitals (FP- L(APWq-lo)) method. Different forms of exchange-correlation energy functional and corresponding potential are employed for structural and electronic properties. Our computed results for lattice parameters, bulk moduli, their pressure derivatives, and cohesive energy are consistent with the available experimental data. Boron antimonide is found to be the hardest compound of this group. For band structure calculations, in addition to LDA and GGA, we used GGA-EV, an approximation employed by Engel and Vosko. The band gap results with GGA-EV are of significant improvement over the earlier work.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculati...We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In 〉 1 (N-rich), and N/In 〈 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.展开更多
In this paper the anomalous magnetic dipole moment ofmuon in the littlest Higgs (LH) model is studied at one-loop level. We discuss the dependence of the contributions on the global symmetry breaking scale f, mizing...In this paper the anomalous magnetic dipole moment ofmuon in the littlest Higgs (LH) model is studied at one-loop level. We discuss the dependence of the contributions on the global symmetry breaking scale f, mizing angles c` and , and the Higgs triplet vacuum expectation value v' in the electroweak precision data preferring ranges. We find that the LH model can give a relatively small, but non-negligible extra weak contribution to the muon anomalous magnetic moment and can reduce the deviation of △aμ from 2.6σ for the SM to 2.5σ for the LH model.展开更多
Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune t...Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune these intriguing effects paves a way to elucidate their fundamental physics and to develop novel electronic/magnetic devices. In this work, we report for the first time that a ferroelectric polarization screening at SrTiO_(3)/PbTiO_(3) interface is able to drive an electronic construction of Ti atom, giving rise to room-temperature ferromagnetism. Surprisingly, such ferromagnetism can be switched to antiferromagnetism by applying a magnetic field, which is reversible. A coupling of itinerant electrons with local moments at interfacial Ti3d orbital was proposed to explain the magnetism. The localization of the itinerant electrons under a magnetic field is responsible for the suppression of magnetism. These findings provide new insights into interfacial magnetism and their control by magnetic field relevant interfacial electrons promising for device applications.展开更多
The thermal expansion coefficient(TEC)and thermal conductivity(k)of thermal fillers are key factors for designing thermal management and thermal protection composite materials.Due to its unique advantages,hexagonal bo...The thermal expansion coefficient(TEC)and thermal conductivity(k)of thermal fillers are key factors for designing thermal management and thermal protection composite materials.Due to its unique advantages,hexagonal boron nitride(h-BN)is one of the most commonly used thermal fillers.However,its TEC and k values are still unclear due to the inconsistency of characterization techniques and sample preparations.In this work,these disputes were addressed using the quasi-harmonic approximation(QHA)method and phonon Boltzmann transport equation(BTE)theory based on the density functional theory(DFT),respectively.The accuracy of our calculated TEC and k values was confirmed by previously reported experimental results,and the underlying physical principles were analyzed from the phonon behaviors.Our TEC results show that the h-BN has small in-plane negative value and large cross-plane positive value,which are-2.4×10^(-6) and 36.4×10^(-6) K^(-1) at 300 K,respectively.And the anisotropic TEC is mainly determined by the anisotropic isothermal bulk modulus and the low-frequency out-of-plane longitudinal phonon modes.We found that the convergence of cutoff radius and q-grid size have significant effect on the accuracy of k of h-BN.Our results show that the in-plane k is much higher than the cross-plane k,and the values at 300 K are 286.6 and 2.7 W m^(-1) K^(-1),respectively.The anisotropic phonon group velocity arising from the vibration behaviors of acoustic phonon modes should be primarily responsible for the anisotropic k.Our calculated TEC and k values will provide important references for the design of h-BN composite materials.展开更多
[PO_(4)]3-possesses small microscopic secondorder susceptibility and polarizability anisotropy,which inherently result in weak second-harmonic generation (SHG)and small birefringence.Herein,a new noncentrosymmetric ph...[PO_(4)]3-possesses small microscopic secondorder susceptibility and polarizability anisotropy,which inherently result in weak second-harmonic generation (SHG)and small birefringence.Herein,a new noncentrosymmetric phosphate,[C(NH_(2))3]3PO_(4)·2H_(2)O,was successfully designed and synthesized by a solution evaporation method.[C(NH_(2))3]3PO_(4)·2H_(2)O without metal ions is composed of planar conjugated guanidine cations and PO_(4)tetrahedrons,which are connected by hydrogen bonds,forming a three-dimensional network.Physical property measurements indicate that the title compound displays an SHG response of 1.5×KH_(2)PO_(4)(KDP) and a larger birefringence (0.055@546.1 nm)compared with most reported ultraviolet nonlinear optical phosphates.Furthermore,first-principles calculations reveal that theπ-conjugated planar[C(NH_(2))3]+cations and[PO_(4)]3-groups are responsible for its excellent linear and NLOproperties.展开更多
Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the d...Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.展开更多
文摘A comprehensive first principles study of III-Antimonide binary compounds is hardly found in literature. We report a broad study of structural and electronic properties of boron antimonide (BSb), aluminium antimonide (AlSb), gallium antimonide (GaSb) and indium antimonide (InSb) in zineblende phase based on density functional theory (DFT). Our calculations are based on Full-PotentiM Lineaxized Augmented Plane wave plus local orbitals (FP- L(APWq-lo)) method. Different forms of exchange-correlation energy functional and corresponding potential are employed for structural and electronic properties. Our computed results for lattice parameters, bulk moduli, their pressure derivatives, and cohesive energy are consistent with the available experimental data. Boron antimonide is found to be the hardest compound of this group. For band structure calculations, in addition to LDA and GGA, we used GGA-EV, an approximation employed by Engel and Vosko. The band gap results with GGA-EV are of significant improvement over the earlier work.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Supported by the National Basic Research Program of China under Grant No. 2006CB921607the National Natural Science Foundation of China under Grant Nos. 60711120203, 60890193+1 种基金the Natural Science Foundation of Beijing City under Grant No. 1092007the Science and Technology Research Foundation for Colleges and Universities of Inner Mongolia Autonomous Region under Grant No. NJ09026
文摘We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In 〉 1 (N-rich), and N/In 〈 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.
基金The project supported in part by National Natural Science Foundation of China and Special Fund sponsored by the Chinese Academy of Sciences
文摘In this paper the anomalous magnetic dipole moment ofmuon in the littlest Higgs (LH) model is studied at one-loop level. We discuss the dependence of the contributions on the global symmetry breaking scale f, mizing angles c` and , and the Higgs triplet vacuum expectation value v' in the electroweak precision data preferring ranges. We find that the LH model can give a relatively small, but non-negligible extra weak contribution to the muon anomalous magnetic moment and can reduce the deviation of △aμ from 2.6σ for the SM to 2.5σ for the LH model.
基金supported by the National Natural Science Foundation of China (U1909212, U1809217, and 11474249)supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering (Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358)。
文摘Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune these intriguing effects paves a way to elucidate their fundamental physics and to develop novel electronic/magnetic devices. In this work, we report for the first time that a ferroelectric polarization screening at SrTiO_(3)/PbTiO_(3) interface is able to drive an electronic construction of Ti atom, giving rise to room-temperature ferromagnetism. Surprisingly, such ferromagnetism can be switched to antiferromagnetism by applying a magnetic field, which is reversible. A coupling of itinerant electrons with local moments at interfacial Ti3d orbital was proposed to explain the magnetism. The localization of the itinerant electrons under a magnetic field is responsible for the suppression of magnetism. These findings provide new insights into interfacial magnetism and their control by magnetic field relevant interfacial electrons promising for device applications.
基金the National Natural Science Foundation of China(51621091,51225203,and 51672060)the National Key Research and Development Program of China(2017YFB0310400)。
文摘The thermal expansion coefficient(TEC)and thermal conductivity(k)of thermal fillers are key factors for designing thermal management and thermal protection composite materials.Due to its unique advantages,hexagonal boron nitride(h-BN)is one of the most commonly used thermal fillers.However,its TEC and k values are still unclear due to the inconsistency of characterization techniques and sample preparations.In this work,these disputes were addressed using the quasi-harmonic approximation(QHA)method and phonon Boltzmann transport equation(BTE)theory based on the density functional theory(DFT),respectively.The accuracy of our calculated TEC and k values was confirmed by previously reported experimental results,and the underlying physical principles were analyzed from the phonon behaviors.Our TEC results show that the h-BN has small in-plane negative value and large cross-plane positive value,which are-2.4×10^(-6) and 36.4×10^(-6) K^(-1) at 300 K,respectively.And the anisotropic TEC is mainly determined by the anisotropic isothermal bulk modulus and the low-frequency out-of-plane longitudinal phonon modes.We found that the convergence of cutoff radius and q-grid size have significant effect on the accuracy of k of h-BN.Our results show that the in-plane k is much higher than the cross-plane k,and the values at 300 K are 286.6 and 2.7 W m^(-1) K^(-1),respectively.The anisotropic phonon group velocity arising from the vibration behaviors of acoustic phonon modes should be primarily responsible for the anisotropic k.Our calculated TEC and k values will provide important references for the design of h-BN composite materials.
基金supported by the National Natural Science Foundation of China (21975255,51890862,21921001 and U1605245)the National Key Research and Development Plan of Ministry of Science and Technology (2016YFB0402104)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the Natural Science Foundation of Fujian Province (2019J01020758)Youth Innovation Promotion Association CAS (2019303)。
文摘[PO_(4)]3-possesses small microscopic secondorder susceptibility and polarizability anisotropy,which inherently result in weak second-harmonic generation (SHG)and small birefringence.Herein,a new noncentrosymmetric phosphate,[C(NH_(2))3]3PO_(4)·2H_(2)O,was successfully designed and synthesized by a solution evaporation method.[C(NH_(2))3]3PO_(4)·2H_(2)O without metal ions is composed of planar conjugated guanidine cations and PO_(4)tetrahedrons,which are connected by hydrogen bonds,forming a three-dimensional network.Physical property measurements indicate that the title compound displays an SHG response of 1.5×KH_(2)PO_(4)(KDP) and a larger birefringence (0.055@546.1 nm)compared with most reported ultraviolet nonlinear optical phosphates.Furthermore,first-principles calculations reveal that theπ-conjugated planar[C(NH_(2))3]+cations and[PO_(4)]3-groups are responsible for its excellent linear and NLOproperties.
基金supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province, China (Grant No. 2009ZRB01702)the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J10LA08)
文摘Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.