Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at ...Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.展开更多
[Objective] The aim was to carry out study on characteristics of phytoplankton and its correlation with water environment in SFTWs. [Method] Based on the pilot-scale SFTWs in Hongqiao transportation hub of Shanghai,ph...[Objective] The aim was to carry out study on characteristics of phytoplankton and its correlation with water environment in SFTWs. [Method] Based on the pilot-scale SFTWs in Hongqiao transportation hub of Shanghai,phytoplankton's community structure,diversity index and their correlation with water purification performance were investigated. [Result] 57 species of seven phylum of phytoplankton were detected in this tested river,including 12 species of Cyanophyta,2 of Cryptophyta,10 of Bacillariophyta,1 of Xanthophyta,7 of Euglenophyta,1 of Pyrrophyta and 24 of Chlorophyta,respectively. Additionally,it was found that Cyanophyta was the dominant phytoplankton,followed by Bacillariophyta and Cyanophyta. Biological density was far more than 10×105 ind./L,thus it could be considered that the river was eutrophic. The range of Shannon-Wiener index was 0.6-2.2,Pielou index was 0.5-2.5 and Margalef index's range was 0.35-0.85,which could further prove that the water was eutrophic. The biological density and species were significantly positively correlated with temperature and N content,indicating that the absorption of N by phytoplankton was the main N-removal pathway in SFTWs. [Conclusion] This study had provided basis for the river regulation and ecological restoration.展开更多
Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properti...Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.展开更多
The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be le...The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.展开更多
Based on the method of probability and statistics, the authors analyzed the physical and mechanical properties of loess in specified area, and discussed its main indexes, the coefficient of variation, and the corre- l...Based on the method of probability and statistics, the authors analyzed the physical and mechanical properties of loess in specified area, and discussed its main indexes, the coefficient of variation, and the corre- lation among the physical and mechanical indexes. Regression equations are built among those indexes, the re- suits show that the variability of mechanical indexes is higher than that of the physical indexes, and the physical indexes have better correlation than the relation between physical and mechanical indexes. The conclusions of this study would contribute to further research about loess in western Liaoning.展开更多
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and...The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that(i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties.(ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.展开更多
文摘Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.
基金Supported by Major Subject of National Science and Technology(2009ZX07317-006 )Shanghai Key Scientific and Technological Issues (062312019)~~
文摘[Objective] The aim was to carry out study on characteristics of phytoplankton and its correlation with water environment in SFTWs. [Method] Based on the pilot-scale SFTWs in Hongqiao transportation hub of Shanghai,phytoplankton's community structure,diversity index and their correlation with water purification performance were investigated. [Result] 57 species of seven phylum of phytoplankton were detected in this tested river,including 12 species of Cyanophyta,2 of Cryptophyta,10 of Bacillariophyta,1 of Xanthophyta,7 of Euglenophyta,1 of Pyrrophyta and 24 of Chlorophyta,respectively. Additionally,it was found that Cyanophyta was the dominant phytoplankton,followed by Bacillariophyta and Cyanophyta. Biological density was far more than 10×105 ind./L,thus it could be considered that the river was eutrophic. The range of Shannon-Wiener index was 0.6-2.2,Pielou index was 0.5-2.5 and Margalef index's range was 0.35-0.85,which could further prove that the water was eutrophic. The biological density and species were significantly positively correlated with temperature and N content,indicating that the absorption of N by phytoplankton was the main N-removal pathway in SFTWs. [Conclusion] This study had provided basis for the river regulation and ecological restoration.
文摘Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.
基金Supported by the Natural Science Foundation of Hebei Province (Grant No. E2012201057) the Scientific and Technological Projects of Hebei Province (Grant No. 2009056) the Natural Science Foundation of Tianjin (Grant No. 10JCYBJC03700)
文摘The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.
文摘Based on the method of probability and statistics, the authors analyzed the physical and mechanical properties of loess in specified area, and discussed its main indexes, the coefficient of variation, and the corre- lation among the physical and mechanical indexes. Regression equations are built among those indexes, the re- suits show that the variability of mechanical indexes is higher than that of the physical indexes, and the physical indexes have better correlation than the relation between physical and mechanical indexes. The conclusions of this study would contribute to further research about loess in western Liaoning.
基金supported by Creative Research Groups of National Natural Science Foundation of China(31321061)National Natural Science Foundation of China(30370419 and 31300450)
文摘The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that(i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties.(ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.