Floorplan, clock network and power plan are crucial steps in deep sub-micron system-on-chip design. A novel di- agonal floorplan is integrated to enhance the data sharing between different cores in system-on-chip. Cus...Floorplan, clock network and power plan are crucial steps in deep sub-micron system-on-chip design. A novel di- agonal floorplan is integrated to enhance the data sharing between different cores in system-on-chip. Custom clock network con- taining hand-adjusted buffers and variable routing rules is constructed to realize balanced synchronization. Effective power plan considering both IR drop and electromigration achieves high utilization and maintains power integrity in our MediaSoC. Using such methods, deep sub-micron design challenges are managed under a fast prototyping methodology, which greatly shortens the design cycle.展开更多
In this letter, the φ^6 + φ^5 model in (D + 1) dimensions can be solved by a truncated series method. A series of solitary solutions of the φ^6 + φ^5 model in (D + 1) dimensions have be obtained.
We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simu...We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.展开更多
Regional climate models often lack detailed description of ice sheet surface and, as a result, are limited in their capability to provide useful information for Antarctic climate research and field campaigns. In this ...Regional climate models often lack detailed description of ice sheet surface and, as a result, are limited in their capability to provide useful information for Antarctic climate research and field campaigns. In this study, an upgraded scheme of surface physics for Antarctic ice sheet(IST) is developed to improve the surface temperature simulations in Antarctica. Through stand-alone simulations, IST shows advantages over the Noah glacial module, a commonly utilized scheme in the widely used Weather Research and Forecasting(WRF) model. These improvements are mainly attributed to the incorporation of detailed snow physics and optimized surface layer parameterization, which results in better simulations of both the surface albedo in summer and the turbulent sensible heat flux in winter. When coupled with IST instead of Noah,WRF models show improved simulation of surface temperatures throughout the year. The bias and root-meansquare-error of annual mean surface temperatures are reduced from 5.7 and 6.0 to 0.2 and 2.7 K.展开更多
This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three...This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).展开更多
Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillation...Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillations.Here we re-examine the total photodetachment cross section of this system by directly applying the standard closed-orbit theory.Our result for the total cross section differs from the result obtained by Haneef et al.The difference between the two results vanishes in the limit of large radius of the reflective sphere.We argue that the theoretical imaging method developed originally for photodetachment near a Hat surface can not be directly applied to the present system.展开更多
The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior...The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.展开更多
In this paper,several exact expressions for the mean heat flux at the wall(qw)for the compressible turbulent channel flows are derived by using the internal energy equation or the total energy equation.Two different r...In this paper,several exact expressions for the mean heat flux at the wall(qw)for the compressible turbulent channel flows are derived by using the internal energy equation or the total energy equation.Two different routes,including the FIK method and the RD method,can be applied.The direct numerical simulation data of compressible channel flows at different Reynolds and Mach numbers verify the correctness of the derived formulas.Discussions related to the different energy equations,and different routes are carried out,and we may arrive at the conclusion that most of the formulas derived in the present work are just mathematical ones and that they generally are lacking in clear physical interpretation in our opinion.They can be used to estimate qw,but might not be suitable for exploring the underlying physics.展开更多
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2002AA1Z1140)the Fok Ying TongEducation Foundation (No. 94031), China
文摘Floorplan, clock network and power plan are crucial steps in deep sub-micron system-on-chip design. A novel di- agonal floorplan is integrated to enhance the data sharing between different cores in system-on-chip. Custom clock network con- taining hand-adjusted buffers and variable routing rules is constructed to realize balanced synchronization. Effective power plan considering both IR drop and electromigration achieves high utilization and maintains power integrity in our MediaSoC. Using such methods, deep sub-micron design challenges are managed under a fast prototyping methodology, which greatly shortens the design cycle.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575026.Acknowledgments The author thanks Prof. S.Y. Lou for helpful discussions.
文摘In this letter, the φ^6 + φ^5 model in (D + 1) dimensions can be solved by a truncated series method. A series of solitary solutions of the φ^6 + φ^5 model in (D + 1) dimensions have be obtained.
基金Support by the National Natural Science Foundation of China under Grant Nos. 10604014 and 10874025by Chinese National Key Basic Research Special Fund under Grant No. 2006CB921706
文摘We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.
基金supported by the National Basic Research Program of China (2013CBA01805)the National Natural Science Foundation for Young Scientists of China (41305054)Tsinghua University Initiative Scientific Research Program (20131089356)
文摘Regional climate models often lack detailed description of ice sheet surface and, as a result, are limited in their capability to provide useful information for Antarctic climate research and field campaigns. In this study, an upgraded scheme of surface physics for Antarctic ice sheet(IST) is developed to improve the surface temperature simulations in Antarctica. Through stand-alone simulations, IST shows advantages over the Noah glacial module, a commonly utilized scheme in the widely used Weather Research and Forecasting(WRF) model. These improvements are mainly attributed to the incorporation of detailed snow physics and optimized surface layer parameterization, which results in better simulations of both the surface albedo in summer and the turbulent sensible heat flux in winter. When coupled with IST instead of Noah,WRF models show improved simulation of surface temperatures throughout the year. The bias and root-meansquare-error of annual mean surface temperatures are reduced from 5.7 and 6.0 to 0.2 and 2.7 K.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072)the National Basic Research Program of China("973" Project)(Grant No.2013CB035503)+3 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Top-Notch Young Talents Program of Chinathe Fundamental Research Funds for the Central Universities of Chinathe Aeronautical Foundation of China(Grant No.20115151019)
文摘This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).
基金Supported by National Natural Science Foundation of China under Grant Nos.11474079 and 11421063
文摘Photodeachment of H^-near a reflective spherical surface was studied by Haneef et al.[J.Phys.B:At.Mol.Opt.Phys.44(2011)195004]using a theoretical imaging method.The total cross section displays interesting oscillations.Here we re-examine the total photodetachment cross section of this system by directly applying the standard closed-orbit theory.Our result for the total cross section differs from the result obtained by Haneef et al.The difference between the two results vanishes in the limit of large radius of the reflective sphere.We argue that the theoretical imaging method developed originally for photodetachment near a Hat surface can not be directly applied to the present system.
基金supported by the National Natural Science Foundation of China(Grant No.11425211)
文摘The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.
基金the National Natural Science Foundation of China(Grant Nos.11822208,11772297,and 91852205)Guangdong provincial Key Laboratory(Grant No.2019B20203001).
文摘In this paper,several exact expressions for the mean heat flux at the wall(qw)for the compressible turbulent channel flows are derived by using the internal energy equation or the total energy equation.Two different routes,including the FIK method and the RD method,can be applied.The direct numerical simulation data of compressible channel flows at different Reynolds and Mach numbers verify the correctness of the derived formulas.Discussions related to the different energy equations,and different routes are carried out,and we may arrive at the conclusion that most of the formulas derived in the present work are just mathematical ones and that they generally are lacking in clear physical interpretation in our opinion.They can be used to estimate qw,but might not be suitable for exploring the underlying physics.